Utilizing inexhaustible solar energy for water purification represents a green and sustainable solution to water scarcity. However, the developments of efficient, inexpensive, convenient and reliable photothermal materials remain a major challenge. Herein, a facile and versatile preparation strategy of sodium alginate (SA)-CuS composite coating with superior adhesion and stability has been proposed toward high-efficiency solar-driven interfacial evaporation. The fabrication process can be quickly completed in aqueous solution with cheap reagents. The SA-CuS coating can be firmly adhered on different substrates, which can withstand rinsing treatment, iterative freeze-thaw cycles as well as high and low pH environments. The SA-CuS coating can convert various substrates into photothermal materials with broad light absorption for desirable solar evaporation because of high CuS loading and rough surface. As a proof of concept, a wood evaporator covered with the SA-CuS coating can achieve a water evaporation rate of ∼2.2 kg m h under one sun illumination, which is superior to most reported wood-based solar evaporators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135164 | DOI Listing |
Int J Biol Macromol
November 2024
State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:
Utilizing inexhaustible solar energy for water purification represents a green and sustainable solution to water scarcity. However, the developments of efficient, inexpensive, convenient and reliable photothermal materials remain a major challenge. Herein, a facile and versatile preparation strategy of sodium alginate (SA)-CuS composite coating with superior adhesion and stability has been proposed toward high-efficiency solar-driven interfacial evaporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!