A compact and low-frequency drive ultrasound transducer for facilitating cavitation-assisted drug permeation via skin.

Biomed Phys Eng Express

Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.

Published: September 2024

Low-frequency sonophoresis has emerged as a promising minimally invasive transdermal drug delivery method. However, effectively inducing cavitation on the skin surface with a compact, low-frequency ultrasound transducer poses a significant challenge. This paper presents a modified design of a low-frequency ultrasound transducer capable of generating ultrasound cavitation on the skin surfaces. The transducer comprises a piezoelectric ceramic disk and a bowl-shaped acoustic resonator. A conical slit structure was incorporated into the modified transducer design to amplify vibration displacement and enhance the maximum sound pressure. The FEM-based simulation results confirmed that the maximum sound pressure at the resonance frequency of 78 kHz was increased by 1.9 times that of the previous design. Ultrasound cavitation could be experimentally observed on the gel surface. Moreover, 3 min of ultrasound treatment significantly improved the caffeine permeability across an artificial membrane. These results demonstrated that this transducer holds promise for enhancing drug permeation by generating ultrasound cavitation on the skin surface.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ad7596DOI Listing

Publication Analysis

Top Keywords

ultrasound transducer
12
cavitation skin
12
ultrasound cavitation
12
compact low-frequency
8
drug permeation
8
skin surface
8
low-frequency ultrasound
8
generating ultrasound
8
maximum sound
8
sound pressure
8

Similar Publications

Background: Histotripsy is a non-invasive, non-ionizing, non-thermal focused ultrasound technique. High amplitude short acoustic pulses converge to create high negative pressures that cavitate endogenous gas into a bubble cloud leading to mechanical tissue destruction. In the United States, histotripsy is approved to treat liver tumors under diagnostic ultrasound guidance but in initial clinical cases, some areas of the liver have not been treated due to bone or gas obstructing the acoustic window for targeting.

View Article and Find Full Text PDF

Non-invasive estimation of pressure differences using 2D synthetic aperture ultrasound imaging offers a precise, low-cost, and risk-free diagnostic tool. Unlike invasive techniques, this preserves natural blood flow and avoids the limitations of devices that occupy lumen space. This paper evaluates a previously published estimator, modified to incorporate Singular Value Decomposition (SVD) echo-cancellation, using data from ten healthy volunteers and one patient.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

Impact of Cell Layout on Bandwidth of Multi-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measurements Technology and Instrument, Tianjin University, Tianjin 300072, China.

Piezoelectric micromachined ultrasonic transducers (PMUTs) show considerable promise for application in ultrasound imaging, but the limited bandwidth of the traditional PMUTs largely affects the imaging quality. This paper focuses on how to arrange cells with different frequencies to maximize the bandwidth and proposes a multi-frequency PMUT (MF-PMUT) linear array. Seven cells with gradually changing frequencies are arranged in a monotonic trend to form a unit, and 32 units are distributed across four lines, forming one element.

View Article and Find Full Text PDF

In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!