Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development and maturation of follicles are intricately linked to egg production and reproductive performance of chickens. Granulosa cells death directly affects the development and maturation of follicles, thereby impacting the reproductive performance of hens. Ferroptosis is a new type of cell death, it is unknown how it affects the growth and development of chicken follicles. In this study, RNA-seq analysis revealed significant differences in the expression of ferroptosis-related genes between normal follicles and atretic follicles, suggesting a potential role for ferroptosis in follicle growth and development. In addition, we found that ubiquitin-specific protease 13 (USP13) was significantly upregulated in atrophic follicles. Overexpression of USP13 results in depletion of glutathione (GSH), peroxidation of lipids, accumulation of iron, and activation of ferroptosis in chicken granulosa cells. In contrast, USP13 knockdown significantly inhibited ferroptosis events. Mechanistically, USP13 prevents the degradation of autophagy related 7 (ATG7) by deubiquitinating it, thereby enhancing the stability of ATG7 protein and ultimately promoting ferroptosis. In conclusion, this study elucidates the crucial role of the USP13-ATG7 axis in regulating ferroptosis in chicken follicle granulosa cells, thereby presenting a novel avenue for molecular breeding research in chickens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402030 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.104209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!