Exposure to environmental pollutants or contaminants is correlated with detrimental effects on human health, such as neurodegenerative diseases. Adopting hair as a biological matrix for biomonitoring is a significant innovation, since it can reflect the long-term chemical exposome, spanning months to years. However, only a limited number of studies have developed analytical strategies for profiling the chemical exposome in this heterogeneous biological matrix. In this study, a systematic investigation of the chemical extraction procedure from human hair was conducted, using a design of experiments and a high-resolution mass spectrometry (HRMS)-based suspect screening approach. The PlackettBurman (PB) design was applied to identify the significant variables influencing the number of detected features. Then, a central composite design was implemented to optimize the levels of each identified significant variable. Under the optimal conditions-15-minute pulverization, 25 mg of hair weight, 40 min of sonication, and a sonication temperature of 35 °C-approximately 32,000 and 15,000 aligned features were detected in positive and negative ion modes, respectively. This optimized analytical procedure was applied to hair samples from patients with Alzheimer's disease (AD) and individuals with normal cognitive function. Overall, 307 chemicals were identified using the suspect screening approach, with 37 chemicals differentiating patients with AD from controls. This study not only optimized an analytical procedure for characterizing the long-term chemical exposome in human hair but also explored the associations between AD and environmental factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.116955 | DOI Listing |
Exposome
February 2024
MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK.
The exposome was proposed following the realization that most human diseases have an environmental rather than a genetic (hereditary) origin. Non-communicable diseases are, in fact, the consequence of multiple exposures that activate a sequence of stages in a multistage process that already starts in early life. This attracted attention to both the multiplicity (in fact, potentially the totality) of exposures humans are exposed to since conception and to the life-long perspective of disease causation.
View Article and Find Full Text PDFBiomedicines
January 2025
Frankel Cardiovascular Center, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Comorbidities related to cardiovascular disease (CVD) and environmental pollution have emerged as serious concerns. The exposome concept underscores the cumulative impact of environmental factors, including climate change, air pollution, chemicals like PFAS, and heavy metals, on cardiovascular health. Chronic exposure to these pollutants contributes to inflammation, oxidative stress, and endothelial dysfunction, further exacerbating the global burden of CVDs.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
The widespread occurrence of pesticides requires thorough evaluations of human population exposure to these chemicals, particularly children, because of the potential long-term effects of some of these neurotoxicants. The present study describes an in-depth screening of 15 pesticides including organophosphates, pyrethroids, carbamates, triazoles, neonicotinoids and their main metabolites. Internal exposure of 7-9-year-old children from urban and agricultural locations in Poland (n = 399) has been studied.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Science, Baylor University, Waco, TX, USA.
Previous epidemiologic studies examining thyroid function and chemical exposures have typically focused on a single or a limited number of chemical classes, often neglecting the effects of chemical mixtures. This study addressed this gap by exploring the associations between exposure to hundreds of chemicals and thyroid function using an exposome-wide association study (ExWAS) approach and National Health and Nutrition Examination Survey (NHANES) data. We analyzed data from three NHANES cycles (2007-2008, 2009-2010, 2011-2012), which include measures of thyroid function (free and total triiodothyronine [T3], free and total thyroxine [T4], thyroid-stimulating hormone [TSH]) and chemical biomarker concentrations from 9,082 participants.
View Article and Find Full Text PDFHum Genomics
January 2025
Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 530 Davis Dr, Durham, NC, 27713, USA.
Background: Comprehensive environmental risk characterization, encompassing physical, chemical, social, ecological, and lifestyle stressors, necessitates innovative approaches to handle the escalating complexity. This is especially true when considering individual and population-level diversity, where the myriad combinations of real-world exposures magnify the combinatoric challenges. The GeoTox framework offers a tractable solution by integrating geospatial exposure data from source-to-outcome in a series of modular, interconnected steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!