Background: Recent studies have suggested a possible link between sarcopenia, immune dysregulation, and chronic inflammation, although the specific immune components implicated remain unclear. This investigation employs Mendelian Randomization (MR) to explore the reciprocal relationship between immune cells, inflammatory markers, and sarcopenia.
Method: We performed two-sample and multivariate MR analyses using publicly accessible genome-wide association studies (GWAS) summary statistics. Our analyses included 731 immune cells, 41 inflammatory cytokines, and sarcopenia related traits (appendicular lean mass [ALM], low hand-grip strength [LHS], and walking pace [WP]), with additional sensitivity analyses conducted to confirm the findings.
Results: After false discovery rate (FDR) correction, significant associations were found between ten immune traits and ALM, with the CD127 marker in the Treg panel showing consistent positive correlation across four sites. In contrast, NKT%lymphocyte negatively correlated with WP (OR = 0.99, P = 0.023). In terms of inflammatory cytokines, macrophage colony-stimulating factor (MCSF) (OR = 1.03, P = 0.024) and hepatocyte growth factor (HGF) (OR = 1.03, P = 0.002) demonstrated positive associations with ALM, while interleukin-16 (IL-16) (OR = 0.99, P = 0.006) was inversely related. The reverse Mendelian randomization analysis found no direct causal links between sarcopenia traits and immune or inflammatory markers. Sensitivity analyses underscored the findings' resilience to pleiotropy, and adjusting for inter-trait dynamics weakened these relationships in the multivariable MR analysis.
Conclusion: Our study reveals causal associations between specific immune phenotypes, inflammatory cytokines, and sarcopenia, providing insight into the development of sarcopenia and potential treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archger.2024.105560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!