Analyzing Electrocardiogram (ECG) signals is imperative for diagnosing cardiovascular diseases. However, evaluating ECG analysis techniques faces challenges due to noise and artifacts in actual signals. Machine learning for automatic diagnosis encounters data acquisition hurdles due to medical data privacy constraints. Addressing these issues, ECG modeling assumes a crucial role in biomedical and parametric spline-based methods have garnered significant attention for their ability to accurately represent the complex temporal dynamics of ECG signals. This study conducts a comparative analysis of two parametric spline-based methods-B-spline and Hermite cubic spline-for ECG modeling, aiming to identify the most effective approach for accurate and reliable ECG representation. The Hermite cubic spline serves as one of the most effective interpolation methods, while B-spline is an approximation method. The comparative analysis includes both qualitative and quantitative evaluations. Qualitative assessment involves visually inspecting the generated spline-based models, comparing their resemblance to the original ECG signals, and employing power spectrum analysis. Quantitative analysis incorporates metrics such as root mean square error (RMSE), Percentage Root Mean Square Difference (PRD) and cross correlation, offering a more objective measure of the model's performance. Preliminary results indicate promising capabilities for both spline-based methods in representing ECG signals. However, the analysis unveils specific strengths and weaknesses for each method. The B-spline method offers greater flexibility and smoothness, while the cubic spline method demonstrates superior waveform capturing abilities with the preservation of control points, a critical aspect in the medical field. Presented research provides valuable insights for researchers and practitioners in selecting the most appropriate method for their specific ECG modeling requirements. Adjustments to control points and parameterization enable the generation of diverse ECG waveforms, enhancing the versatility of this modeling technique. This approach has the potential to extend its utility to other medical signals, presenting a promising avenue for advancing biomedical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2024.153783 | DOI Listing |
Biomed Phys Eng Express
January 2025
Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.
Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.
View Article and Find Full Text PDFNat Sci Sleep
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
Purpose: To develop a deep learning (DL) model for obstructive sleep apnea (OSA) detection and severity assessment and provide a new approach for convenient, economical, and accurate disease detection.
Methods: Considering medical reliability and acquisition simplicity, we used electrocardiogram (ECG) and oxygen saturation (SpO) signals to develop a multimodal signal fusion multiscale Transformer model for OSA detection and severity assessment. The proposed model comprises signal preprocessing, feature extraction, cross-modal interaction, and classification modules.
ACS Appl Mater Interfaces
January 2025
Textile and Clothing College, Qingdao University, Qingdao 266071, China.
Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.
View Article and Find Full Text PDFClin Transl Sci
January 2025
NIMML Institute, Blacksburg, Virginia, USA.
NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, USA.
: This study aimed to explore machine learning approaches for predicting physical exertion using physiological signals collected from wearable devices. : Both traditional machine learning and deep learning methods for classification and regression were assessed. The research involved 27 healthy participants engaged in controlled cycling exercises.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!