Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2024.107440 | DOI Listing |
Epilepsy Res
October 2024
Department of Psychology and Neuroscience, USA; Department of Biology, USA; Institute of Biomedical Studies, USA; Baylor University, Baylor Center for Developmental Disabilities, Baylor University, Waco, TX 76798, USA. Electronic address:
Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice.
View Article and Find Full Text PDFGenes Brain Behav
August 2023
Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA.
The mechanistic target of rapamycin (mTOR) pathway is a signaling system integral to neural growth and migration. In both patients and rodent models, mutations to the phosphatase and tensin homolog gene (PTEN) on chromosome 10 results in hyperactivation of the mTOR pathway, as well as seizures, intellectual disabilities and autistic behaviors. Rapamycin, an inhibitor of mTOR, can reverse the epileptic phenotype of neural subset specific Pten knockout (NS-Pten KO) mice, but its impact on behavior is not known.
View Article and Find Full Text PDFEpilepsy Behav
September 2021
Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA. Electronic address:
Individuals who experience recurrent spontaneous seizures often show behavioral and physiological comorbidities. Those with epilepsy are at a high risk of bone fractures (independent of seizure-related falls) and show a higher rate of a diagnosis of Autism Spectrum Disorder. The neural subset-specific (NS) Pten knockout (KO) mouse has an epilepsy phenotype, has been characterized to show autistic-like deficits, and has an osteoporosis phenotype.
View Article and Find Full Text PDFJ Neurosci Methods
December 2020
Department of Psychology and Neuroscience, Nashville, TN, 37232, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA. Electronic address:
Background: Communicative behaviors play a vital role in mammals and are highly relevant to human neurodevelopmental conditions. Mice produce communicative vocalizations that occur in the ultrasonic range, which are commonly analyzed within the Avisoft recording system. Fully automated programs such as the Mouse Song Analyzer in MATLAB, have been developed to analyze USVs in a shorter time period, however, no study has compared the accuracy of MATLAB to Avisoft.
View Article and Find Full Text PDFBehav Brain Res
January 2020
Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Institute of Biomedical Studies, Baylor University, Waco TX 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA. Electronic address:
The NS-Pten knockout (KO) mouse exhibits hyperactivity of the mammalian target of rapamycin (mTOR) and is a model of autism spectrum disorder (ASD). ASD presents with marked deficits in communication which can be elucidated by investigating their counterpart in mice, ultrasonic vocalizations (USVs). While USVs have been found to be altered in NS-Pten KO pups, no study has assessed whether this communication deficit persists into adulthood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!