Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rat sciatic nerve model is commonly used to test novel therapies for nerve injury repair. The static sciatic index (SSI) is a useful metric for quantifying functional recovery, and involves comparing an operated paw versus a control paw using a weighted ratio between the toe spread and the internal toe spread. To calculate it, rats are placed in a transparent box, photos are taken from underneath and the toe distances measured manually. This is labour intensive and subject to human error due to the challenge of consistently taking photos, identifying digits and making manual measurements. Although several commercial kits have been developed to address this challenge, they have seen little dissemination due to cost. Here we develop a novel algorithm for automatic measurement of SSI metrics based on video data using casted U-Nets. The algorithm consists of three U-Nets, one to segment the hind paws and two for the two pairs of digits which input into the SSI calculation. A training intersection over union error of 60 % and 80 % was achieved for the back paws and for both digit segmentation U-Nets, respectfully. The algorithm was tested against video data from three separate experiments. Compared to manual measurements, the algorithm provides the same profile of recovery for every experiment but with a tighter standard deviation in the SSI measure. Through the open-source release of this algorithm, we aim to provide an inexpensive tool to more reliably quantify functional recovery metrics to the nerve repair research community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.109036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!