A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SlPPDK modulates sugar and acid metabolism to influence flavor quality during tomato fruit ripening. | LitMetric

SlPPDK modulates sugar and acid metabolism to influence flavor quality during tomato fruit ripening.

Biochem Biophys Res Commun

Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: November 2024

Fruit ripening is a highly intricate process, where the dynamic interplay of soluble sugar and organic acid metabolism is crucial for developing the characteristic flavor qualities. Pyruvate orthophosphate dikinase (PPDK) plays a pivotal role in modulating the process of gluconeogenesis during plant development. However, the specific physiological role of PPDK in fruit development has yet to be elucidated. In this study, we investigated the expression pattern, subcellular localization and functional significance of SlPPDK in tomato fruits. Our results reveal that SlPPDK is highly expressed in fruits and flowers, with its expression progressively increasing as the fruit ripens. Subcellular localization analyses demonstrate that SlPPDK is distributed in the cell membrane, cytoplasm, and nucleus. Using CRISPR/Cas9 technology, we generated SlPPDK knockout mutants, which exhibited a marked reduction in enzyme activity, leading to significant alterations in sugar and organic acid metabolism. These findings highlight the critical role of SlPPDK in maintaining the sugar-acid balance essential for tomato flavor quality and provide a foundation for future breeding strategies aimed at enhancing tomato fruit flavor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150615DOI Listing

Publication Analysis

Top Keywords

acid metabolism
12
flavor quality
8
tomato fruit
8
fruit ripening
8
sugar organic
8
organic acid
8
subcellular localization
8
slppdk
6
fruit
5
slppdk modulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!