In condensed matter physics, the Kagome lattice and its inherent flat bands have attracted considerable attention for their prediction and observation to host a variety of exotic physical phenomena. Despite extensive efforts to fabricate thin films of Kagome materials aimed at modulating flat bands through electrostatic gating or strain manipulation, progress has been limited. Here, we report the observation of a d-orbital hybridized Kagome-derived flat band in Ag/Si(111) as revealed by angle-resolved photoemission spectroscopy. Our findings indicate that silver atoms on a silicon substrate form an unconventional distorted breathing Kagome structure, where a delicate balance in the hopping parameters of the in-plane d-orbitals leads to destructive interference, resulting in double flat bands. The exact quantum destructive interference mechanism that forms the flat band is uncovered in a rigorous manner that has not been described before. These results illuminate the potential for integrating metal-semiconductor interfaces on semiconductor surfaces into Kagome physics, particularly in exploring the flat bands of ideal 2D Kagome systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c05398DOI Listing

Publication Analysis

Top Keywords

flat bands
16
flat band
12
destructive interference
8
flat
7
kagome
6
atomically thin
4
thin two-dimensional
4
two-dimensional kagome
4
kagome flat
4
band silicon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!