Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the defect solutions of the nonreciprocal Cahn-Hilliard model. We find two kinds of defects, spirals with unit magnitude topological charge, and topologically neutral targets. These defects generate radially outward traveling waves and thus break the parity and time-reversal symmetry. For a given strength of nonreciprocity, spirals and targets with unique asymptotic wave number and amplitude are selected. We use large-scale simulations to show that at low nonreciprocity α, disordered states evolve into quasistationary spiral networks. With increasing α, we observe networks composed primarily of targets. Beyond a critical threshold α_{c}, a disorder-order transition from defect networks to traveling waves emerges. The transition is marked by a sharp rise in the global polar order.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.078301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!