Recently, Josserand et al. proposed a stochastic nonlinear Schrödinger model for finite-time singularity-mediated turbulence [Phys. Rev. Fluids 5, 054607 (2020)PLFHBR2469-990X10.1103/PhysRevFluids.5.054607]. Here, we use instanton calculus to quantify the effect of extreme fluctuations on the statistics of the energy dissipation rate. While the contribution of the instanton alone is insufficient, we obtain excellent agreement with direct simulations when including Gaussian fluctuations and the corresponding zero mode. Fluctuations are crucial to obtain the correct scaling when quasisingular events govern the turbulence statistics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.077202DOI Listing

Publication Analysis

Top Keywords

stochastic nonlinear
8
nonlinear schrödinger
8
instantons fluctuations
4
fluctuations singularities
4
singularities supercritical
4
supercritical stochastic
4
schrödinger equation
4
equation josserand
4
josserand et al
4
et al proposed
4

Similar Publications

Stochastic Filtering of the Attitude Quaternion.

Sensors (Basel)

December 2024

Mechanical Engineering Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

Several stochastic H∞ filters for estimating the attitude of a rigid body from line-of-sight measurements and rate gyro readings are developed. The measurements are corrupted by white noise with unknown variances. Our approach consists of estimating the quaternion while attenuating the transmission gain from the unknown variances and initial errors to the current estimation error.

View Article and Find Full Text PDF

This paper proposes the fixed-time prescribed performance optimal consensus control method for stochastic nonlinear multi-agent systems with sensor faults. The consensus error converges to the prescribed performance bounds in fixed-time by an improved performance function and coordinate transformation. Due to the unknown faults in sensors, the system states cannot be gained correctly; therefore, an adaptive compensation strategy is constructed based on the approximation capabilities of neural networks to solve the negative impact of sensor failures.

View Article and Find Full Text PDF

Maximum correntropy criterion (MCC) has been an important method in machine learning and signal processing communities since it was successfully applied in various non-Gaussian noise scenarios. In comparison with the classical least squares method (LS), which takes only the second-order moment of models into consideration and belongs to the convex optimization problem, MCC captures the high-order information of models that play crucial roles in robust learning, which is usually accompanied by solving the non-convexity optimization problems. As we know, the theoretical research on convex optimizations has made significant achievements, while theoretical understandings of non-convex optimization are still far from mature.

View Article and Find Full Text PDF

We present an experimental and numerical study of a piezoelectric energy harvester driven by broadband vibrations. This device can extract power from random fluctuations and can be described by a stochastic model, based on an underdamped Langevin equation with white noise, which mimics the dynamics of the piezoelectric material. A crucial point in the modelisation is represented by the appropriate description of the coupled load circuit that is necessary to harvest electrical energy.

View Article and Find Full Text PDF

Mixed Resolution-of-the-Identity Compressed Exchange for Hybrid Mixed Deterministic-Stochastic Density Functional Theory from Low to Extreme Temperatures.

J Chem Theory Comput

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!