Near-infrared (NIR)-absorbing dyes are valuable for various applications, such as bioimaging and electronic devices. This work introduces a novel approach for designing NIR dyes, oxidation of weakly coupled diradicals. Our approach features a weak exchange interaction in diradicals, which potentially leads to bonding/antibonding molecular orbitals with a small energy gap. We found that removing one of two singly occupied molecular orbital electrons of the diradicals results in an exceptionally narrow frontier orbital energy gap. We examined a series of Blatter radical dimers, and the most weakly coupled diradical prepared in this work ( ∼ 0.12 eV) with a molecular weight of 590 Da exhibited a strong NIR absorption band reaching 2200 nm upon one-electron oxidation. The optical band gaps of the radical cations strongly correlate to the exchange interaction in the precursor neutral species, offering prediction and fine-tuning of the optical band gap in the NIR region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02212 | DOI Listing |
Biomaterials
December 2024
Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China. Electronic address:
As a promising tumor treatment, chemodynamic therapy (CDT) can specifically catalyze HO into the cytotoxic hydroxyl radical (·OH) via Fenton/Fenton-like reaction. However, the limited HO and weakly acidic pH in tumor microenvironment (TME) would severely restrict the therapeutic efficiency of CDT. Here, a weakly acid activated, HO self-supplied, hyaluronic acid (HA)-functionalized Ce/Cu bimetallic nanoreactor (CBPNs@HA) is elaborately designed for complementary chemodynamic-immunotherapy.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:
The in situ synthesis of Fe oxide is an established method for stabilizing metals and metalloids (Me) in contaminated soils. Nevertheless, the potential for enhanced Me sequestration through repeated Fe oxide application and the fundamental mechanisms of this process yet to be systemically investigated. In this study, the means by which repetitive Fe oxide synthesis enhances the immobilization of Cd, Zn, and As was investigated using batch experiments.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.
View Article and Find Full Text PDFNat Commun
December 2024
Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.
View Article and Find Full Text PDFMetabolites
December 2024
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St., 3, Pushchino 142290, Russia.
Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!