A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Re-routing MAP kinase signaling for penetration peg formation in predator yeasts. | LitMetric

Saccharomycopsis yeasts are natural organic sulfur auxotrophs due to lack of genes required for the uptake and assimilation of sulfate/sulfite. Starvation for methionine induces a shift to a predatory, mycoparasitic life strategy that is unique amongst ascomycetous yeasts. Similar to fungal plant pathogens that separated from Saccharomycopsis more than 400 million years ago, a specialized infection structure called penetration peg is used for prey cell invasion. Penetration pegs are highly enriched with chitin. Here we demonstrate that an ancient and conserved MAP kinase signaling pathway regulates penetration peg formation and successful predation in the predator yeast S. schoenii. Deletion of the MAP kinase gene SsKIL1, a homolog of the Saccharomyces cerevisiae ScKSS1/ScFUS3 and the rice blast Magnaporthe oryzae MoPMK1 genes, as well as deletion of the transcription factor SsSTE12 generate non-pathogenic mutants that fail to form penetration pegs. Comparative global transcriptome analyses using RNAseq indicate loss of the SsKil1-SsSte12-dependent predation response in the mutant strains, while a methionine starvation response is still executed. Within the promoter sequences of genes upregulated during predation we identified a cis-regulatory element similar to the ScSte12 pheromone response element. Our results indicate that, re-routing MAP-kinase signaling by re-wiring Ste12 transcriptional control towards predation specific genes contributed to the parallel evolution of this predacious behaviour in predator yeasts. Consequently, we found that SsSTE12 is dispensable for mating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392346PMC
http://dx.doi.org/10.1371/journal.ppat.1012503DOI Listing

Publication Analysis

Top Keywords

map kinase
12
penetration peg
12
kinase signaling
8
peg formation
8
predator yeasts
8
penetration pegs
8
penetration
5
re-routing map
4
signaling penetration
4
formation predator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!