Late-Stage Fluorination of Tyrosine Residues in Antiviral Protein Cyanovirin-N.

Chem Asian J

Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil.

Published: December 2024

The applications of fluorinated molecules in chemical biology are rapidly expanding driven by the unique properties of C-F bonds, leading to increased interest in methodologies for controlled introduction of this atom. In this study, we present the first method for late-stage fluorination of tyrosine residues in proteins. Our results demonstrate that electrophilic fluorination using Selectfluor, a stable and non-toxic reagent, offers a straightforward and cost-effective method for labeling Cyanovirin-N (CVN), a 101-amino-acid lectin with effective antiviral activity. Uni- and bidimensional H, C and F NMR analyses, along with mass spectrometry, revealed chemoselective fluorination of the three tyrosine residues in CVN without affecting its overall structure or mannose-binding affinity. Additionally, we observed that other aromatic amino acids, such as tryptophan, phenylalanine, and histidine, are not fluorinated using this method. These findings advance our understanding of protein fluorination and its applications in studying structure, dynamics, and interactions, as well as other biological utilities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202400850DOI Listing

Publication Analysis

Top Keywords

tyrosine residues
12
late-stage fluorination
8
fluorination tyrosine
8
residues antiviral
4
antiviral protein
4
protein cyanovirin-n
4
cyanovirin-n applications
4
applications fluorinated
4
fluorinated molecules
4
molecules chemical
4

Similar Publications

Signaling pathways play key roles in many important biological processes, such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. The use of phospho-specific antibodies facilitates the analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

During the life cycle of the influenza virus, viral RNPs (vRNPs) are transported to the nucleus for replication. Given that a large number of progeny viral RNA occupies the nucleus, whether there is any host protein located in the nucleus that recognizes the viral RNA and inhibits the viral replication remains largely unknown. In this study, to explore the role of hnRNPH1 in influenza virus infection, we knocked down and over-expressed the hnRNPH1 proteins in 293T cells, then infected the cells with the influenza virus.

View Article and Find Full Text PDF

DNA Damage Response Mutants Challenged with Genotoxic Agents-A Different Experimental Approach to Investigate the and Genes.

Genes (Basel)

January 2025

Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.

DNA damage response (DDR) is a highly conserved and complex signal transduction network required for preserving genome integrity. DNA repair pathways downstream of DDR include the tyrosyl-DNA phosphodiesterase1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine residue of topoisomerase I (TopI) and 3'-phosphate end of DNA. A small TDP1 subfamily, composed of TDP1α and TDP1β, is present in plants.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums.

Food Res Int

February 2025

College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China. Electronic address:

Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!