Melanoma is a highly malignant skin tumor with poor prognosis. Circadian rhythm is closely related to melanoma pathogenesis. This study aimed to identify key circadian rhythm genes (CRGs) in melanoma and explore their potential as diagnostic and prognostic biomarkers. Microarray data of melanoma tissues and normal skins were obtained. Differentially expressed genes were identified and weighted gene co-expression network analysis (WGCNA) was performed to screen hub genes associated with melanoma. By overlapping hub genes with known CRGs, 125 melanoma-related CRGs were identified. Functional enrichment analysis revealed these CRGs were mainly involved in circadian rhythm and other cancer-related pathways. Three machine learning algorithms including LASSO regression, support vector machine-recursive feature elimination (SVM-RFE), and random forest were utilized to select key CRGs. Six CRGs (ABCC2, CA14, EGR3, FBXW7, LDHB, and PSEN2) were identified as key CRGs for melanoma diagnosis and prognosis. Diagnostic values of key CRGs were evaluated by ROC analysis in training and validation sets. Prognostic values of key CRGs were assessed by survival analysis and a multivariate Cox regression prognostic model was constructed. The prognostic model could effectively stratify melanoma patients into high- and low-risk groups with significantly different survival. A nomogram integrating clinical variables and risk score was built to predict 3-, 5- and 10-year overall survival of melanoma patients. In summary, six CRGs were identified as key genes associated with melanoma pathogenesis and may serve as promising diagnostic and prognostic biomarkers. The prognostic model and nomogram could facilitate personalized prognosis evaluation of melanoma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386929PMC
http://dx.doi.org/10.18632/aging.205961DOI Listing

Publication Analysis

Top Keywords

circadian rhythm
16
key crgs
16
prognostic model
12
melanoma patients
12
melanoma
11
crgs
10
diagnosis prognosis
8
machine learning
8
melanoma pathogenesis
8
genes crgs
8

Similar Publications

Background: Despite transcranial direct current stimulation (tDCS) has demonstrated encouraging potential for modulating the circadian rhythm, little is known about how well and sustainably tDCS might improve the subjective sleep quality in older adults. This study sought to determine how tDCS affected sleep quality and cognition, as well as how well pre-treatment sleep quality predicted tDCS effects on domain-specific cognitive functions in patients with mild neurocognitive disorder due to Alzheimer's disease (NCD-AD).

Methods: This clinical trial aimed to compare the effectiveness of tDCS and cognitive training in mild NCD-AD patients (n =  201).

View Article and Find Full Text PDF

Introduction: Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents.

View Article and Find Full Text PDF

Challenges and opportunities for statistical power and biomarker identification arising from rhythmic variation in proteomics.

NPJ Biol Timing Sleep

January 2025

Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK.

Time-of-day variation in the molecular profile of biofluids and tissues is a well-described phenomenon, but-especially for proteomics-is rarely considered in terms of the challenges this presents to reproducible biomarker identification. We provide a case study analysis of human circadian and ultradian rhythmicity in proteins, including in the complement and coagulation cascades and apolipoproteins, with PLG, CFAH, ZA2G and ITIH2 demonstrated as rhythmic for the first time. We also show that rhythmicity increases the risk of Type II errors due to the reduction in statistical power from increased variance, and that controlling for rhythmic time-of-day variation improves statistical power and reduces the chances of Type II errors.

View Article and Find Full Text PDF

Background: Circadian rhythm disruption (CRD) affects the expression levels of a range of biological clock genes, such as brain and muscle ARNT-Like-1 (BMAL1), which is considered to be an important factor in triggering or exacerbating inflammatory response. However, the underlying effect of CRD on the pathogenesis of apical periodontitis, a common oral inflammatory disease, currently remains unknown. Exploring the effects and pathogenic mechanisms of CRD on apical periodontitis will be beneficial in providing new ideas for the prevention and treatment of apical periodontitis.

View Article and Find Full Text PDF

Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review.

Bone Res

January 2025

Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!