Abrocitinib is a selective Janus kinase 1 inhibitor approved for the treatment of atopic dermatitis. It is metabolized primarily by cytochrome P450 (CYP) 2C19 (approximately 53%) and CYP2C9 (approximately 30%), which form 2 active metabolites. The pharmacologic activity of abrocitinib is attributable to the unbound exposures of abrocitinib and those metabolites with active moiety area under the plasma concentration-time curve (AUC) considered the best measure of the total pharmacological effect. The effect of CYP2C19 and/or CYP2C9 genotypes on abrocitinib and active moiety exposures were evaluated using a meta-analysis of the noncompartmental estimates of exposure pooled from 10 clinical studies. A linear mixed-effects model was developed on the basis of the power model to evaluate the effect of CYP2C19 and/or CYP2C9 genotypes on exposure (i.e., abrocitinib AUC and peak plasma concentration, active moiety AUC and peak plasma concentration). The genotypes were evaluated individually and as a combined phenotype effect. When evaluating the poor metabolizers of CYP2C19 or CYP2C9 individually, the estimated increases were 44.9% and 42.0% in active moiety AUC, respectively. The combined phenotype models showed a 0.6% decrease, and 25.1% and 10.5% increases in the active moiety AUC for "elevated," "mixed," and "reduced" metabolizers, respectively. Overall, the active moiety exposures did not appear to be affected to a clinically meaningful extent by different genotypes of CYP2C19 and/or CYP2C9.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpdd.1465DOI Listing

Publication Analysis

Top Keywords

active moiety
24
cyp2c19 and/or
12
and/or cyp2c9
12
moiety auc
12
meta-analysis noncompartmental
8
cyp2c19 cyp2c9
8
exposure abrocitinib
8
cyp2c9 genotypes
8
moiety exposures
8
auc peak
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!