The rise of antibiotic resistance in existing pathogens has been identified as a major threat to global healthcare in the twenty-first century. This resistance has consequences such as increased cost and prolonged hospital stays, treatment failure, and ultimately increased risk of patient mortality. It is therefore imperative to develop strategies to combat drug resistance. Combined treatment of common antibiotics and natural compounds is one of the most effective methods against resistant bacterial infections. Gallic acid (GA) is a natural secondary metabolite abundantly found in plants and has significant medicinal effects in various aspects of health. In this research, the antibacterial effects of azithromycin (AZM) and GA alone and in combination with each other were investigated on planktonic and biofilm forms of methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (P. aeruginosa). The results showed that the combination of AZM/GA had an additive effect against MSSA and P. aeruginosa and a synergistic effect against MRSA. In addition, combining these two agents significantly reduced the minimum biofilm inhibitory concentration (MBIC) of AZM and GA in the MRSA strain. Finally, the level of ROS generation in the effect of AZM plus GA was evaluated in the bacteria. Among the studied strains, ROS production was significantly increased in combination treatment compared to AZM alone in MRSA. The results show that the combination of AZM and GA has a significant effect against MRSA and can be considered as an effective treatment option.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-024-00579-7 | DOI Listing |
Front Public Health
September 2024
Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
Background: Urinary tract infections (UTIs) and antibacterial resistance (ABR) are important public health problems, but they are not well-studied among people living with human immunodeficiency virus (PLHIV) globally, especially in low-income countries. Therefore, it is important to regularly measure the extent of UTIs and ABR in the most susceptible populations. This study aimed to investigate the prevalence of UTIs, associated factors, bacterial causal agents, and their antibiotic susceptibility profile among PLHIV in central Ethiopia.
View Article and Find Full Text PDFInt Microbiol
August 2024
Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
The rise of antibiotic resistance in existing pathogens has been identified as a major threat to global healthcare in the twenty-first century. This resistance has consequences such as increased cost and prolonged hospital stays, treatment failure, and ultimately increased risk of patient mortality. It is therefore imperative to develop strategies to combat drug resistance.
View Article and Find Full Text PDFInt J Pharm X
June 2024
Department of Medical Laboratory Technology, Higher Technological Institute for Applied Health Sciences in Minya, Minya, Egypt.
Infected wounds pose a significant challenge in healthcare, requiring innovative therapeutic strategies. Therefore, there is a critical need for innovative pharmaceutical materials to improve wound healing and combat bacterial growth. This study examined the efficacy of azithromycin-loaded silver nanoparticles (AZM-AgNPs) in treating infected wounds.
View Article and Find Full Text PDFComput Math Methods Med
August 2022
Department of Neurosurgery, Chongqing Red Cross Hospital, People's Hospital of Jiangbei District, Chongqing 400020, China.
Objective: To analyze the in vitro antibacterial and antibiofilm activities of lysozyme (LYS) and its combination with various drugs against Gram-positive bacteria (GPB, = 9), thus to provide an exploration direction for drug development.
Methods: The minimum inhibitory concentrations (MICs) of linezolid (LZD), amikacin (AMK), ceftriaxone/sulbactam (CRO/SBT), cefotaxime/sulbactam (CTX/SBT), piperacillin/sulbactam (PIP/SBT), doxycycline (DOX), levofloxacin (LVX), amoxicillin/clavulanate potassium (7 : 1, AK71), imipenem (IPM), azithromycin (AZM), and their combinations with LYS were determined with tuber twice dilution. The antimicrobial and antibiofilm activities of LYS, AZM, LVX, and their combinations with others were evaluated through MTT and crystal violet assay.
EBioMedicine
August 2019
Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA. Electronic address:
Background: Multidrug-resistant (MDR) Acinetobacter baumannii infections have high mortality rates and few treatment options. Synergistic drug combinations may improve clinical outcome and reduce further emergence of resistance in MDR pathogens. Here we show an unexpected potent synergy of two translation inhibitors against the pathogen: commonly prescribed macrolide antibiotic azithromycin (AZM), widely ignored as a treatment alternative for invasive Gram-negative pathogens, and minocycline, among the current standard-of-care agents used for A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!