A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits. | LitMetric

AI Article Synopsis

  • The study aimed to compare two imaging techniques, compressed sensing (CS) and Cascades of Independently Recurrent Inference Machines (CIRIM), focusing on their effectiveness in reconstructing 12-fold accelerated MRI scans of patients with neurological issues.
  • A cohort of 62 patients underwent 3D T2-FLAIR imaging on a 3T MRI, and image quality was evaluated by experienced neuroradiologists based on factors like artifacts, sharpness, and diagnostic confidence.
  • Results showed that CIRIM was generally preferred for better image quality and artifacts, while CS had some advantages in specific areas like sharpness and artifacts when assessed by different specialists.

Article Abstract

Objective: To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reconstructed.

Materials And Methods: Twelve-fold accelerated 3D T2-FLAIR images were obtained from a cohort of 62 patients with neurological deficits on 3 T MRI. Images were reconstructed offline via CS and the CIRIM. Image quality was assessed in a blinded and randomized manner by two experienced interventional neuroradiologists and one experienced pediatric neuroradiologist on imaging artifacts, perceived spatial resolution (sharpness), anatomic conspicuity, diagnostic confidence, and contrast. The methods were also compared in terms of self-referenced quality metrics, image resolution, patient groups and reconstruction time. In ten scans, the contrast ratio (CR) was determined between lesions and white matter. The effect of acceleration factor was assessed in a publicly available fully sampled dataset, since ground truth data are not available in prospectively accelerated clinical scans. Specifically, 451 FLAIR scans, including scans with white matter lesions, were adopted from the FastMRI database to evaluate structural similarity (SSIM) and the CR of lesions and white matter on ranging acceleration factors from four-fold up to 12-fold.

Results: Interventional neuroradiologists significantly preferred the CIRIM for imaging artifacts, anatomic conspicuity, and contrast. One rater significantly preferred the CIRIM in terms of sharpness and diagnostic confidence. The pediatric neuroradiologist preferred CS for imaging artifacts and sharpness. Compared to CS, the CIRIM reconstructions significantly improved in terms of imaging artifacts and anatomic conspicuity (p < 0.01) for higher resolution scans while yielding a 28% higher SNR (p = 0.001) and a 5.8% lower CR (p = 0.04). There were no differences between patient groups. Additionally, CIRIM was five times faster than CS was. An increasing acceleration factor did not lead to changes in CR (p = 0.92), but led to lower SSIM (p = 0.002).

Discussion: Patients with neurological deficits can undergo MRI at a range of moderate to high acceleration. DL reconstruction outperforms CS in terms of image resolution, efficient denoising with a modest reduction in contrast and reduced reconstruction times.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10334-024-01200-8DOI Listing

Publication Analysis

Top Keywords

imaging artifacts
16
neurological deficits
12
anatomic conspicuity
12
white matter
12
image quality
8
patients neurological
8
interventional neuroradiologists
8
pediatric neuroradiologist
8
diagnostic confidence
8
lesions white
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: