Nonaqueous aluminum-ion batteries (AIBs) provide advantages, such as high energy density, enhanced safety, and reduced corrosion, making them ideal for advanced energy storage solutions. A key challenge faced by AIBs is the lack of suitable cathode materials for rapid Al-ion insertion /extraction. Herein, KMn[Fe(CN)] 2HO (KMHCF) is innovatively chosen as a model to investigate the aluminum storage performance of Prussian blue analogues in nonaqueous AIBs. As anticipated, the KMHCF allows for reversible aluminum storage and exhibits characteristic charge/discharge plateaus. Furthermore, carbon combined highly crystalline KMHCF (HC-KMHCF@C) is synthesized through a chelator-assisted preparation method in combination with an in situ carbon compositing technique. With reduced [Fe(CN)]⁻ defects, lower interstitial water content, and enhanced conductivity, HC-KMHCF@C exhibits a high aluminum storage capacity (146.2 mAh g⁻¹ at 0.5 A g⁻¹) and satisfactory cycling performance (maintaining 86.4 mAh g⁻¹ after 800 cycles). The electrochemical reaction mechanism of HC-KMHCF@C is investigated in detail. During the initial charge, K⁺ ions are extracted, shifting the structure from monoclinic to cubic. In subsequent cycles, reversible Al insertion and extraction cause the structure to alternate between monoclinic and cubic phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401000 | DOI Listing |
Insects
January 2025
Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa.
This study aims to establish the pest management approach for pests of stored maize and determine the current control practices. Semi-structured questionnaires were administered to 77 smallholder farmers from 16 villages at King Sabata Dalindyebo local municipality in the Eastern Cape Province of South Africa. The results revealed that about 50% of the farmers had a formal education, the average farm size was 1 hectare, and they were predominantly cultivating yellow maize.
View Article and Find Full Text PDFFood Chem
January 2025
Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:
The high specific surface area of metal-organic framework (MOF) materials endows them with efficient adsorption capabilities, thereby facilitating sample purification. In this study, a novel aluminum-based MOF (Al-MOF) was synthesized and employed as a solid-phase extraction (SPE) adsorbent for the purification of aflatoxins B (AFB), AFB, AFG, and AFG in vegetable oils. It was revealed that Al-MOF adsorbs aflatoxins through hydrogen bonding and π-π interactions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India.
The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels.
View Article and Find Full Text PDFWaste Manag
January 2025
VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland.
Battery technology has attained a key position as an energy storage technology in decarbonization of energy systems. Lithium-ion batteries have become the dominant technology currently used in consumer appliances, electric vehicles (EVs), and industrial applications. However, lithium-ion batteries are not alike and can have different cathode chemistries which makes their recycling more complex.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!