Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as , , and , and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494936PMC
http://dx.doi.org/10.1128/msystems.00665-24DOI Listing

Publication Analysis

Top Keywords

gut microbiome
28
microbiome metabolites
24
metabolites pancreatitis
12
role gut
8
metabolites
8
based gut
8
microbiome
7
gut
7
pancreatitis
5
pancreatitis gut
4

Similar Publications

Objective: Traditional medicine (TM) has played a key role in the health care system of East Asian countries, including China, Japan and South Korea. This bibliometric study analyzes the recent research status of these three TMs, including traditional Chinese medicine (TCM), traditional Korean medicine (TKM), and Kampo medicine (KM).

Methods: Research topics of studies published for recent 10 years (2014 to 2023), through a search on MEDLINE via PubMed, was analyzed.

View Article and Find Full Text PDF

The Gut in Critical Illness.

Curr Gastroenterol Rep

December 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.

Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.

Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.

View Article and Find Full Text PDF

Benefits of a diverse gut microbiome in systemic anti-cancer therapy patients.

Br J Nurs

January 2025

Cancer Clinical Nurse, Western Australia Country Health Service, Mamang Outpatient Department, Bunbury, Australia.

View Article and Find Full Text PDF

LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice.

Microbiol Spectr

January 2025

Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.

Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.

View Article and Find Full Text PDF

Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!