Soft actuators made of soft materials cannot generate precisely efficient output forces compared to rigid actuators. It is a promising strategy to equip soft actuators with variable stiffness modules of layer jamming mechanism, which could increase their stiffness as needed. Inspired by the gecko's the array of setae, bionic adhesive flaps with inclined micropillars are applied in layer jamming mechanism. In this paper, after the manufacturing process of the layer jamming actuator based on the bionic adhesive flaps is described, the equivalent stiffness models of the whole actuator are established in the unjammed and jammed states. And the shear adhesive force of a single micropillar is calculated based on the Kendall viscoelastic band model. The finite element simulation results of two bionic adhesive flaps show that the interlaminar shear stress and stiffness increase with the increase of pressure. The measurement of shear adhesive force show that the critical shear adhesive force of the bionic adhesive material is 3.2 times that of polyethylene terephthalate (PET) material, and exhibit the ability of anisotropic adhesion behavior. The variable stiffness performance of the layer jamming actuator based on bionic adhesive flaps is evaluated by three test methods, and the max stiffness reaches 8.027 N mm, which is 1.5 times higher than the stiffness of the layer jamming actuator based on the PET flaps. All results of simulation and experiment effectively verify the validity and superiority of applying the bionic adhesive flaps to the layer jamming mechanism to enhance the stiffness.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ad70e9DOI Listing

Publication Analysis

Top Keywords

layer jamming
28
bionic adhesive
28
adhesive flaps
24
jamming actuator
16
actuator based
16
variable stiffness
12
based bionic
12
jamming mechanism
12
shear adhesive
12
adhesive force
12

Similar Publications

On Security Performance of SWIPT Multi-User Jamming Based on Mixed RF/FSO Systems with Untrusted Relay.

Sensors (Basel)

December 2024

Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China.

This paper presents research on the security performance of a multi-user interference-based mixed RF/FSO system based on SWIPT untrusted relay. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga (M) turbulence, respectively. Multiple users transmit messages to the destination with the help of multiple cooperating relays, one of which may become an untrusted relay as an insider attacker.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed.

View Article and Find Full Text PDF

Wearable robots, especially those composed of soft materials, are increasingly attracting interest due to their comfort, ease of donning and doffing, and their ability to provide assistance across various applications. In wearable robotics, striking a balance between ensuring low impedance for wearer comfort and providing sufficient assistive force is a notable design challenge. In this study, we propose exploiting impedance variation in accordance with the types of muscle contraction in the human body.

View Article and Find Full Text PDF

Due to the inherent broadcasting nature and openness of wireless transmission channels, wireless communication systems are vulnerable to the eavesdropping of malicious attackers and usually encounter undesirable situations of information leakage. The problem may be more serious when a passive eavesdropping device is directly connected to the transmitter of a single-input single-output (SISO) system. To deal with this urgent situation, a novel IRS-assisted physical-layer secure transmission scheme based on joint transmitter perturbation and IRS reflection (JPR) is proposed, such that the secrecy of wireless SISO systems can be comprehensively guaranteed regardless of whether the reflection-based jamming from the IRS to the eavesdropper is blocked or not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!