AI Article Synopsis

Article Abstract

The Shandong Peninsula, the largest peninsula in China, is situated at the estuary of the Yellow River and is bordered by both the Bohai Sea and the Yellow Sea. This region is renowned for its rich plant diversity. However, the historical origins of these plant species remain poorly understood. This study analyzed 2410 shared species from 865 genera and 161 families distributed across Shandong and its nine adjacent regions to investigate the floristic diversity of the Shandong Peninsula. These regions were considered as operational taxonomic units (OTUs), with the shared species serving as the basis for each OTU. Hierarchical cluster analyses were performed to assess their floristic similarity, employing the Bray-Curtis distance algorithm and the UPGMA clustering method. The results revealed that the ten regions were grouped into three clusters, delineated by the Yellow River. Notably, the floristic similarity of the Shandong Peninsula was found to be more closely aligned with regions south of the Yellow River, despite Shandong historical connection to Liaoning in the north. These findings underscore the barrier effect of the Yellow River and provide insights into the formation of biotic diversity patterns between northern and eastern China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358103PMC
http://dx.doi.org/10.3389/fpls.2024.1419876DOI Listing

Publication Analysis

Top Keywords

yellow river
20
shandong peninsula
16
barrier yellow
8
floristic diversity
8
diversity shandong
8
shared species
8
floristic similarity
8
shandong
6
yellow
6
floristic
5

Similar Publications

Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.

View Article and Find Full Text PDF

Near complete genome assembly of Yadong trout (Salmo trutta).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

The Yadong trout (Salmo trutta), a species endemic to the Yatung River in Tibet, China, was classified as a second-class protected species in the 20th century. Now, it is considered one of the most important fishery resources in China. In this study, we assembled a near-complete genome of the S.

View Article and Find Full Text PDF

AFM multiparametric characterization of LLPS in plants.

Trends Plant Sci

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China. Electronic address:

View Article and Find Full Text PDF

The Yellow River Basin is China's grain production base and ecological barrier, with an important strategic position. Therefore, it is of great significance to analyze spatiotemporal pattern of ecosystem services and agricultural green, and further exploring the driving mechanism of coordination using the GTWR model to examine how the Yellow River Basin's agriculture evolve sustainably. The results indicate that: (1) In 2011-2021, the Yellow River Basin's ecosystem service value showed a state of growth first and then decline, indicating that the decrease trend cannot be ignored; the Yellow River Basin has seen a steady rise in agricultural green level, with regional disparities progressively disappearing.

View Article and Find Full Text PDF

This study investigates the critical impact of incipient sediment motion on sediment transport estimation and riverbed evolution prediction. In this research, we examine the effects of ice cover on the vertical distribution of flow velocity, establishing a mathematical relationship between the vertical average flow velocities in open channel and ice-covered flows. This leads to the derivation of a formula for incipient motion velocity under ice cover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!