Purpose: Reporting templates for chest radiographs (CXRs) for patients presenting or being clinically managed for severe acute respiratory syndrome coronavirus 2 [coronavirus disease 2019 (COVID-19)] has attracted advocacy from international radiology societies. We aim to explore the effectiveness and useability of three international templates through the concordance of, and between, radiologists reporting on the presence and severity of COVID-19 on CXRs.
Approach: Seventy CXRs were obtained from a referral hospital, 50 from patients with COVID-19 (30 rated "classic" COVID-19 appearance and 20 "indeterminate") and 10 "normal" and 10 "alternative pathology" CXRs. The recruited radiologists were assigned to three test sets with the same CXRs but with different template orders. Each radiologist read their test set three times and assigned a classification to the CXR using the Royal Australian New Zealand College of Radiology (RANZCR), British Society of Thoracic Imaging (BSTI), and Modified COVID-19 Reporting and Data System (Dutch; mCO-RADS) templates. Inter-reader variability and intra-reader variability were measured using Fleiss' kappa coefficient.
Results: Twelve Australian radiologists participated. The BSTI template had the highest inter-reader agreement (0.46; "moderate" agreement), followed by RANZCR (0.45) and mCO-RADS (0.32). Concordance was driven by strong agreement in "normal" and "alternative" classifications and was lowest for "indeterminate." General consistency was observed across classifications and templates, with intra-reader variability ranging from "good" to "very good" for COVID-19 CXRs (0.61), "normal" CXRs (0.76), and "alternative" (0.68).
Conclusions: Reporting templates may be useful in reducing variation among radiology reports, with intra-reader variability showing promise. Feasibility and implementation require a wider approach including referring and treating doctors plus the development of training packages for radiologists specific to the template being used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349612 | PMC |
http://dx.doi.org/10.1117/1.JMI.11.4.045504 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.
View Article and Find Full Text PDFFront Public Health
January 2025
Johns Hopkins International Injury Research Unit, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
Background: Drowning is a leading cause of death among young children. The United Nations Resolution on global drowning prevention (2021) and World Health Assembly Resolution in 2023 have drawn attention to the issue. This scoping review synthesizes the current evidence on the effectiveness of child drowning prevention interventions since the 2008 World Report on Child Injury Prevention and implications for their implementation.
View Article and Find Full Text PDFJ Immunother Precis Oncol
February 2025
Sarah Cannon Research Institute (SCRI) at HealthONE, Denver, CO, USA.
The cadherin superfamily of proteins is critical for cell-cell interactions and demonstrates tissue-specific expression profiles. In cancers, disruption of cell-cell adhesion is frequently associated with oncogenesis and metastasis. As such, these proteins have been the targets of multiple attempts to develop novel therapeutics in malignancy.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Gynecology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, PR China.
As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL).
View Article and Find Full Text PDFNanoscale
January 2025
Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
Rolling circle amplification (RCA) is a widely used method for the synthesis of DNA nanoparticles and macro-hydrogels. Several strategies, including oscillation-promoted entanglement of DNA chains, multi-round chain amplification, hybridization between DNA chains, and hybridization with functional moieties, were applied to synthesize DNA macro-hydrogels; alternatively, flower-like nanoparticles were also produced. Here we report a straightforward yet effective method to manipulate the morphology of RCA products from nanoparticles to 3D hydrogels using an additional cold treatment step of the circular DNA template prior to elongation using phi29 DNA polymerase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!