We investigated the role of the N-terminus (residues 1-43) of the myosin essential light chain (N-ELC) in regulating cardiac function in hypertrophic (HCM-A57G) and restrictive (RCM-E143K) cardiomyopathy mice. Both models were cross-genotyped with N-ELC-truncated Δ43 mice, and the offspring were studied using echocardiography and muscle contractile mechanics. In A57G×Δ43 mice, Δ43 expression improved heart function and reduced hypertrophy and fibrosis. No improvements were seen in E143K×Δ43 compared to RCM-E143K mice. HCM-mutant pathology involved an impaired N-ELC tension sensor, disrupted N-ELC-actin interactions, an altered force-pCa relationship, and a destabilized myosin's super-relaxed state. Removal of the malfunctioning N-ELC sensor led to functional rescue in HCM-truncated mutant hearts. However, the RCM mutation could not be rescued by N-ELC deletion, likely due to its proximity to the myosin motor domain, affecting lever-arm rigidity and myosin function. This study provides insights into the role of N-ELC in the development and potential rescue of ELC-mutant cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357882 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.110591 | DOI Listing |
The gastrointestinal epithelium serves as a critical barrier separating intestinal lumen contents from the underlying tissue environment. Structure and function of the apical junctional complex (AJC), comprising tight and adherens junctions, are essential for establishing and maintaining a polarized and functional epithelial barrier. In this study, we investigated mechanisms by which an apical polarity protein Crumbs homolog 3 (CRB3) regulates AJC assembly and barrier function in primary murine intestinal epithelial cells.
View Article and Find Full Text PDFAutoimmun Rev
January 2025
Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,. Electronic address:
Background: Dilated cardiomyopathy (DCM) is a prevalent myocardial disorder characterized by impaired cardiac function affecting either the left ventricle or both ventricles. Accumulating evidence suggests that autoimmunity represents a key mechanism implicated in its pathogenesis, as several abundant autoantibodies have been identified in patients with the condition. However, the prevalence of these antibodies (Abs) in patients with DCM compared to that in both healthy controls (HCs) and those with ischemic cardiomyopathy (ICM), as well as their potential association with DCM, remains unclear.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:
Ethnopharmacological Relevance: The rhizomes of Curcuma phaeocaulis Val. are a Rhizoma curcumae source in Chinese pharmacopoeia, and this traditional Chinese medicine has been extensively used in China to promote blood circulation and remove blood stasis. However, little is known regarding the vasodilatory effects and underlying mechanisms.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!