An increasing number of proteins involved in bacterial cell cycle events have been recently shown to undergo phase separation. The resulting biomolecular condensates play an important role in cell cycle protein function and may be involved in development of persister cells tolerant to antibiotics. Here we report that the chromosomal Ter macrodomain organizer MatP, a division site selection protein implicated in the coordination of chromosome segregation with cell division, forms biomolecular condensates in cytomimetic systems. These condensates are favored by crowding and preferentially localize at the membrane of microfluidics droplets, a behavior probably mediated by MatP-lipid binding. Condensates are negatively regulated and partially dislodged from the membrane by DNA sequences recognized by MatP ( ), which partition into them. Unexpectedly, MatP condensation is enhanced by FtsZ, a core component of the division machinery previously described to undergo phase separation. Our biophysical analyses uncover a direct interaction between the two proteins, disrupted by sequences. This binding might have implications for FtsZ ring positioning at mid-cell by the Ter linkage, which comprises MatP and two other proteins that bridge the canonical MatP/FtsZ interaction. FtsZ/MatP condensates interconvert with bundles in response to GTP addition, providing additional levels of regulation. Consistent with discrete foci reported in cells, MatP biomolecular condensates may facilitate MatP's role in chromosome organization and spatiotemporal regulation of cytokinesis and DNA segregation. Moreover, sequestration of MatP in these membraneless compartments, with or without FtsZ, could promote cell entry into dormant states that are able to survive antibiotic treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361077 | PMC |
http://dx.doi.org/10.1101/2024.07.23.604758 | DOI Listing |
Curr Biol
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel. Electronic address:
Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.
View Article and Find Full Text PDFCell
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA. Electronic address:
In a recently published article in Device, Saehyun Kim et al. report that selective excitation of bacteria can inhibit their proliferation in an antibiotic-free manner. We herein discuss the molecular and thermodynamic principles underlying this "selective excitability," which provides a new aspect to understand bacterial physiology.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Hedgehog (Hh) morphogen governs embryonic development and tissue homeostasis through the Ci/Gli family transcription factors. Here we report that Hh induces phase separation of the fused (Fu)/Ulk family kinases to allosterically regulate Ci/Gli. We find that Hh-induced phosphorylation of Fu/Ulk3 promotes SUMOylation of their inverted phosphorylation-dependent SUMOylation motifs.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Liquid-liquid phase separation (LLPS) drives the formation of membraneless intracellular compartments within both cytoplasm and nucleus. These compartments can form distinct physicochemical environments, and in particular display different concentrations of proteins, RNA, and macromolecules compared to the surrounding cytosol. Recent studies have highlighted the significant role of aberrant LLPS in cancer development and progression, impacting many core processes such as oncogenic signalling pathways, transcriptional dysregulation, and genome instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!