The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance. Avian models have, so far, enabled key insights into craniofacial and peripheral nervous system development. Yet, the molecular mechanisms driving trigeminal ganglion formation and subsequent nerve growth remain elusive. In this study, we performed RNA-sequencing at multiple stages of chick trigeminal ganglion development and generated a novel transcriptomic dataset that has been curated to illustrate temporally dynamic gene expression patterns. This publicly available resource identifies major pathways involved in trigeminal gangliogenesis, particularly with respect to the condensation and maturation of placode-derived neurons, thus inviting new lines of research into the essential processes governing trigeminal ganglion development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361123 | PMC |
http://dx.doi.org/10.1101/2024.07.20.604400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!