Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early developmental programming involves extensive cell lineage diversification through shared molecular signaling networks. Clinical observations of congenital heart disease (CHD) patients carrying genetic variants revealed correlations with multi-organ impairments at the developmental and functional levels. For example, many CHD patients present with glomerulosclerosis, periglomerular fibrosis, and albuminuria. Still, it remains largely unknown whether variants associated with CHD can directly alter kidney cell fate, tissue patterning, and organ-level function. To address this question, we engineered human iPS cells (iPSCs) and organ-on-a-chip systems to uncover the role of pathogenic variants in kidney podocytogenesis. Our results show that abrogation of causes altered patterning of the mesoderm and intermediate mesoderm (IM) cell lineages, which give rise to nearly all kidney cell types. Upon further differentiation of IM cells, the mutant podocytes failed to develop arborizations and interdigitations. A reconstituted glomerulus-on-a-chip platform exhibited significant proteinuria as clinically observed in glomerulopathies. This study implicates CHD-associated mutations in kidney tissue malformation and provides opportunities for therapeutic discovery in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360959 | PMC |
http://dx.doi.org/10.1101/2024.08.02.606108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!