A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dietary iron deficiency impairs effector function of memory T cells following influenza infection. | LitMetric

The establishment of memory T cell responses is critical to protection against pathogens and is influenced by the conditions under which memory formation occurs. Iron is an essential micronutrient for multiple immunologic processes and nutritional deficiency is a common problem worldwide. Despite its prevalence, the impact of nutritional iron deficiency on the establishment of memory T cell responses is not fully understood. In this study we investigate the impact of nutritional iron deficiency on the generation, phenotype, and function of memory T cell responses using a murine model of dietary iron modulation in the context of influenza infection. Iron deficient mice have decreased systemic iron levels and develop significant anemia. Increased T cell expression of the transferrin receptor (CD71) is seen in iron deficient mice at baseline. During primary influenza infection, iron deficient mice experience increased weight loss and phenotypic evidence of impairments in T cell activation. Following recovery from infection, iron deficient mice generate increased influenza specific memory T cells which exhibit impaired ability to produce IFNγ, most notably within the lung. Importantly, the ability to produce IFNγ and TNFα is not recovered by co-culture with iron replete dendritic cells, suggesting a T cell intrinsic alteration in functional memory formation. Altogether, these results isolate a critical effect of nutritional iron deficiency on T cell memory development and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361010PMC
http://dx.doi.org/10.1101/2024.07.22.604599DOI Listing

Publication Analysis

Top Keywords

iron deficiency
16
iron deficient
16
deficient mice
16
influenza infection
12
memory cell
12
cell responses
12
nutritional iron
12
infection iron
12
iron
11
dietary iron
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!