Rationale: Rupture of abdominal aortic aneurysms (AAA) is associated with high mortality. However, the precise molecular and cellular drivers of AAA rupture remain elusive. Our prior study showed that global and myeloid-specific deletion of matricellular protein thrombospondin-1 (TSP1) protects mice from aneurysm formation primarily by inhibiting vascular inflammation.
Objective: To investigate the cellular and molecular mechanisms that drive AAA rupture by testing how TSP1 deficiency in different cell populations affects the rupture event.
Methods And Results: We deleted TSP1 in endothelial cells and macrophages --- the major TSP1-expressing cells in aneurysmal tissues ---- by crossbreeding mice with and mice, respectively. Aortic aneurysm and rupture were induced by angiotensin II in mice with hypercholesterolemia. Myeloid-specific knockout, but not endothelial-specific knockout, increased the rate of lethal aortic rupture by more than 2 folds. Combined analyses of single-cell RNA sequencing and histology showed a unique cellular and molecular signature of the rupture-prone aorta that was characterized by a broad suppression in inflammation and extracellular matrix production. Visium spatial transcriptomic analysis on human AAA tissues showed a correlation between low TSP1 expression and aortic dissection.
Conclusions: TSP1 expression by myeloid cells negatively regulates aneurysm rupture, likely through promoting the matrix repair phenotypes of vascular smooth muscle cells thereby increasing the strength of the vascular wall.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361016 | PMC |
http://dx.doi.org/10.1101/2024.07.30.605216 | DOI Listing |
J Am Coll Cardiol
November 2024
Elite Centre for Individualized Medicine in Arterial Disease, Odense University Hospital, Odense, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
Background: Prospective data on the clinical course of the ascending thoracic aorta are lacking.
Objectives: This study sought to estimate growth rates of the ascending aorta and to evaluate occurrences of adverse aortic events (AAEs)-that is, thoracic aortic ruptures, type A aortic dissections, and thoracic aortic-related deaths.
Methods: In this prospective cohort study from the population-based, multicenter, randomized DANCAVAS (Danish Cardiovascular Screening trials) I and II, participants underwent cardiovascular risk assessments including electrocardiogram-gated, noncontrast computed tomography (CT) scans.
Afr J Reprod Health
December 2024
Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine,Changshu 215500, Jiang Su,China.
The study was designed to appraise the effects of early antibiotic administration on reproductive tract infections and fetal membrane cell scorching in instances of premature rupture of membranes (PROM). A total of 107 pregnant women diagnosed with PROM between July 2020 and June 2022 were randomly assigned to two groups: the Intervention (n=54), where ampicillin were administered within 24 hours of PROM onset, and the control group (n=53), where ampicillin were given 24-48 hours after PROM. Maternal and neonatal outcomes, incidence of reproductive tract infections, and fetal membrane cell scorching indicators (Caspase-1, Caspase -3, Caspase-9 and IL-β) were compared.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India.
: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China.
The solder burrs on the 304V wire surface can easily scratch the vascular tissue during interventional treatment, resulting in complications such as medial tears, bleeding, dissection, and rupture. Abrasive blasting is often used to remove solder burr and obtain a smooth surface for the interventional device. This study conducted an abrasive blasting experiment to explore the effects of process parameters (air pressure, lift-off height, abrasive volume, and abrasive type) on processing time, surface roughness, and mechanical properties to reveal the material removal mechanism.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!