A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PD-1 controls differentiation, survival, and TCR affinity evolution of stem-like CD8+ T cells. | LitMetric

Stem-like progenitors are a critical subset of cytotoxic T cells that self-renew and give rise to expanded populations of effector cells critical for successful checkpoint blockade immunotherapy. Emerging evidence suggests that the tumor-draining lymph nodes can support the continuous generation of these stem-like cells that replenish the tumor sites and act as a critical source of expanded effector populations, underlining the importance of understanding what factors promote and maintain activated T cells in the stem-like state. Using advanced 3D multiplex immunofluorescence imaging, here we identified antigen-presentation niches in tumor-draining lymph nodes that support the expansion, maintenance, and affinity evolution of a unique population of TCF-1+PD-1+SLAMF6 stem-like CD8+ T cells. Our results show that contrary to the prevailing view that persistent TCR signaling drives terminal effector differentiation, prolonged antigen engagement well beyond the initial priming phase sustained the proliferation and self-renewal of these stem-like T cells . The inhibitory PD-1 pathway plays a central role in this process by mediating the fine-tuning of TCR and co-stimulatory signal input that enables selective expansion of high affinity TCR stem-like clones, enabling them to act as a renewable source of high affinity effector cells. PD-1 checkpoint blockade disrupts this fine tuning of input signaling, leading to terminal differentiation to the effector state or death of the most avid anti-tumor stem-like cells. Our results thus reveal an unexpected relationship between TCR ligand affinity recognition, a key negative feedback regulatory loop, and T cell stemness programming. Furthermore, these findings raise questions about whether anti-PD-1 checkpoint blockade during cancer immunotherapy provides a short-term anti-tumor effect that comes at the cost of diminishing efficacy due to progressive loss of these critical high affinity stem-like precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360996PMC
http://dx.doi.org/10.1101/2024.08.02.606241DOI Listing

Publication Analysis

Top Keywords

checkpoint blockade
12
stem-like cells
12
high affinity
12
stem-like
9
cells
9
affinity evolution
8
stem-like cd8+
8
cd8+ cells
8
cells stem-like
8
effector cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!