A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oleanolic acid improves the in vitro developmental competence of early porcine embryos by reducing oxidative stress and ameliorating mitochondrial function. | LitMetric

Objective: Oleanolic acid (OA) is a pentacyclic triterpenoid with antioxidant activity that can be an effective scavenger of free radicals in cells. This study was designed to investigate the effects of OA on porcine early embryo developmental competence in vitro and its possible mechanisms of action.

Methods: In the present study, parthenogenetically activated porcine embryos were used as models to assess the effect of OA on the in vitro developmental capacity of early porcine embryos in vitro. Zygotic genome activation, mitochondrial function, oxidative stress, cell proliferation and apoptosis in early porcine embryos were examined after supplementing the culture medium with 5 μM OA.

Results: The results showed that 5 μM OA supplementation not only significantly increased the blastocyst diameter in early porcine embryos on day 6 but also increased the total number of blastocysts. Furthermore, OA supplementation increased the blastocyst proliferation rate and decreased blastocyst apoptosis. Moreover, OA supplementation significantly increased the proportion of embryos that developed to the 4-cell stage after 48 h of in vitro culture and upregulated the expression of genes associated with zygotic genome activation (DPPA2 and ZSCAN4). Notably, OA alleviated oxidative stress by reducing the intracellular levels of reactive oxygen species and increasing the intracellular levels of reduced glutathione at the 4-cell stage and increased the activities of superoxide dismutase and catalase. Concurrently, OA significantly increased the mitochondrial membrane potential and intracellular ATP content.

Conclusion: These results suggest that OA promotes the in vitro developmental competence of parthenogenetically activated porcine embryos by reducing oxidative stress and improving mitochondrial function during in vitro culture and that OA may contribute to the efficiency of in vitro embryo production.

Download full-text PDF

Source
http://dx.doi.org/10.5713/ab.24.0307DOI Listing

Publication Analysis

Top Keywords

porcine embryos
24
early porcine
16
oxidative stress
16
vitro developmental
12
developmental competence
12
mitochondrial function
12
supplementation increased
12
oleanolic acid
8
vitro
8
embryos reducing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!