Purpose: The purpose of this study was to compare the wear, fracture strength, and mode of failure of various brands of 3D-printed resin denture teeth with prefabricated acrylic resin. Additionally, the study aimed to analyze the different modes of failure exhibited by these teeth.
Materials And Methods: The study utilized 90 3D-printed and 30 prefabricated, 3D-printed resin teeth from three brands: L = Optiprint Lumina, A = ASIGA DentaTooth, P = Power resins, along with prefabricated acrylic teeth from M = Major Super Lux. Each of the 30 samples per main group was divided into two subgroups: The first subgroup samples (M1, A1, L1, P1) were subjected to thermal cycling and mechanical loading; M2, A2, L2, and P2 were not aged and tested directly. A scan of a prefabricated acrylic tooth was taken using an intraoral scanner, and then the STL file was printed using an Asiga 3Dprinter. The specimens underwent aging to simulate 5 years of clinical use with 10,000 thermal cycles and 1,200,000 dynamic load cycles on a chewing simulator. Surface roughness parameters (Rz, Ra, Rq) were measured using a 3D Optical Profilometer, fracture resistance was assessed using a universal testing machine, and SEM analysis was performed to observe failure modes. Statistical analysis using T-test, one-way analysis, and two-way analysis processed by the Statistical Package for Social Sciences (SPSS) software version 23.0 (SPSS: Inc., Chicago, IL, USA) was done with a level of significance set at <0.05.
Results: The results showed that the difference in surface roughness parameters (Rz, Ra, Rq) before and after aging for Group M, Group A, Group L, and Group P was statistically significant (p < 0.05). Two-way ANOVA for wear resistance between aging and groups on dependent variable Rz (p = 0.002), Ra (p = 0.001), Rq (p = 0.001) were significant. Multiple comparisons for surface roughness parameters showed Group A and Group L were lower than Group P and Group M (p < 0.05). For fracture strength, One-way ANOVA showed a significant difference between groups for fracture strength either without or after the aging procedure (p < 0.05). Multiple comparisons for fracture strength without aging showed no significant difference between Group M, Group A, and Group L (p > 0.05). After the aging procedure fracture strength for Group M was higher than Group A, Group L, and Group P (p < 0.05).
Conclusion: 3D-printed resin teeth showed a greater and comparable wear resistance to prefabricated acrylic teeth. Fracture strength was comparable between prefabricated acrylic teeth and 3D-printed resin (Asiga and Lumina) before aging, but after aging 3D-printed resin teeth showed less fracture strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.13939 | DOI Listing |
Sensors (Basel)
December 2024
Institute of Atmospheric Pollution Research-National Research Council (IIA-CNR), Research Area of Rome 1, Strada Provinciale 35d, Montelibretti, 9-00010 Roma, Italy.
Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan.
This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli, Maharashtra, India, ORCID: https://orcid.org/0000-0002-6661-0931.
Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).
Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.
Eur J Oral Sci
January 2025
Faculty of Dentistry, Department of Prosthodontics, Çukurova University, Adana, Turkey.
The main challenges to the widespread clinical application of three-dimensional (3D)-printed customized trays include cost and time limitations. This study examined how changing the internal structure of 3D-printed materials used for customized trays affects flexural strength (FS), flexural modulus (FM), manufacturing time, and material weight. Specimens (64 × 10 × 3.
View Article and Find Full Text PDFDent Mater
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Preclinical Dentistry, Semmelweis University, Budapest, Hungary. Electronic address:
Objectives: This systematic review and network meta-analysis aimed to compare different PMMA (polymethyl methacrylate) complete denture base manufacturing techniques by evaluating their mechanical properties. The objective was to determine which method-compression molding, injection molding, milling, or 3D printing-offers the best performance.
Data: In vitro studies investigating mechanical properties of PMMA denture base resins.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!