This study investigates the potential phytochemicals that modulate bovine peroxisome proliferator-activated receptor gamma (PPARγ) and the mitogen-activated protein kinase (MAPK) pathways to enhance milk fat production in dairy animals. Bovine PPARγ, a key member of the nuclear hormone receptor superfamily, plays a vital role in regulating metabolic, cellular differentiation, apoptosis, and anti-inflammatory responses in livestock, while the MAPK pathway is contributory in cellular processes that impact milk fat synthesis. This approach involved an all-inclusive molecular docking analysis of 10,000 polyphenols to identify potential PPARγ ligands. From this extensive screening, top 10 compounds were selected that exhibited the highest binding affinities to bovine PPARγ. Particularly, curcumin sulfate, isoflavone, and quercetin emerged as the most promising candidates. These compounds demonstrated superior docking scores (-9.28 kcal/mol, -9.27 kcal/mol, and -7.31 kcal/mol, respectively) and lower RMSD values compared to the synthetic bovine PPARγ agonist, 2,4-thiazolidinedione (-4.12 kcal/mol), indicating a strong potential for modulating the receptor. Molecular dynamics simulations (MDS) further affirmed the stability of these polyphenols-bovine PPARγ complexes, suggesting their effective and sustained interactions. These polyphenols, known as fatty acid synthase inhibitors, are suggested to influence lipid metabolism pathways crucial to milk fat production, possibly through the downregulation of the MAPK pathway. The screened compounds showed favorable pharmacokinetic profiles, including nontoxicity, carcinogenicity, and high gastrointestinal absorption, positioning them as viable candidates for enhancing dairy cattle health and milk production. These findings may open new possibilities for the use of phytochemicals as feed additives in dairy animals, suggesting a novel approach to improve milk fat synthesis through the dual modulation of bovine PPARγ and MAPK pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551727PMC
http://dx.doi.org/10.1093/jas/skae248DOI Listing

Publication Analysis

Top Keywords

bovine pparγ
20
milk fat
20
fat synthesis
12
modulate bovine
8
pparγ
8
dairy cattle
8
mapk pathways
8
fat production
8
dairy animals
8
mapk pathway
8

Similar Publications

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Purpose: The objective was to use cyclic tensile loading to compare the gap formation at suture site of three different suture materials to repair bovine radial meniscal tears: (1) polyglactin sutures, (2) tough adhesive puncture sealing (TAPS) sutures and (3) ultra-high molecular weight polyethylene (UHMWPE) sutures.

Methods: Twelve ex vivo bovine knees were dissected to retrieve the menisci. Complete radial tears were performed on 24 menisci, which were then separated into three groups and repaired using either pristine 2-0 polyglactin sutures, TAPS sutures (2-0 polyglactin sutures coated with adhesive chitosan/alginate hydrogels) or 2-0 UHMWPE sutures with a single stitch.

View Article and Find Full Text PDF

Primary human mast cells (MC) obtained through culturing of blood-derived MC progenitors are the preferred model for the study of MRGPRX2- IgE-mediated MC activation. In order to assess the impact of culture conditions on functional MRGPRX2 expression, we cultured CD34-enriched PBMC from peripheral whole blood (PB) and buffy coat (BC) samples in MethoCult medium containing stem cell factor (SCF) and interleukin (IL)-3, modified through variations in seeding density and adding or withholding IL-6, IL-9 and fetal bovine serum (FBS). Functional expression of MRGPRX2 was assessed after 4 weeks via flow cytometry.

View Article and Find Full Text PDF

Background: Infectious bovine rhinotracheitis (IBR) is a global contagious respiratory disease of ruminants caused by Bovine Herpes virus-1 (BoHV-1). It causes substantial financial losses in the dairy industry worldwide and is considered one of the most important causative agents of abortion and reproductive problems in dairy cattle.

Aim: This study aimed to estimate the seroprevalence of IBR and the related risk factors in the dairy population in Gharbia governorate, Egypt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!