A human-specific progenitor sub-domain extends neurogenesis and increases motor neuron production.

Nat Neurosci

Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.

Published: October 2024

Neurogenesis lasts ~10 times longer in developing humans compared to mice, resulting in a >1,000-fold increase in the number of neurons in the CNS. To identify molecular and cellular mechanisms contributing to this difference, we studied human and mouse motor neurogenesis using a stem cell differentiation system that recapitulates species-specific scales of development. Comparison of human and mouse single-cell gene expression data identified human-specific progenitors characterized by coexpression of NKX2-2 and OLIG2 that give rise to spinal motor neurons. Unlike classical OLIG2 motor neuron progenitors that give rise to two motor neurons each, OLIG2/NKX2-2 ventral motor neuron progenitors remain cycling longer, yielding ~5 times more motor neurons that are biased toward later-born, FOXP1-expressing subtypes. Knockout of NKX2-2 converts ventral motor neuron progenitors into classical motor neuron progenitors. Such new progenitors may contribute to the increased production of human motor neurons required for the generation of larger, more complex nervous systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-024-01739-8DOI Listing

Publication Analysis

Top Keywords

motor neuron
20
motor neurons
16
neuron progenitors
16
motor
10
human mouse
8
ventral motor
8
progenitors
6
neuron
5
neurons
5
human-specific progenitor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!