Maize is a valuable raw material for feed and food production. Healthy seed germination is important for improving the yield and quality of maize. Seed aging occurs relatively fast in crops and it is a process that delays germination as well as reduces its rate and even causes total loss of seed viability. However, the physiological and transcriptional mechanisms that regulate maize seeds, especially aging seed germination remain unclear. Coronatine (COR) which is a phytotoxin produced by Pseudomonas syringae and a new type of plant growth regulator can effectively regulate plant growth and development, and regulate seed germination. In this study, the physiological and transcriptomic mechanisms of COR-induced maize seed germination under different aging degrees were analyzed. The results showed that 0.001-0.01 μmol/L COR could promote the germination of aging maize seed and the growth of primary roots and shoots. COR treatment increased the content of gibberellins (GA) and decreased the content of abscisic acid (ABA) in B73 seeds before germination. The result of RNA-seq analysis showed 497 differentially expressed genes in COR treatment compared with the control. Three genes associated with GA biosynthesis (ZmCPPS2, ZmD3, and ZmGA2ox2), and two genes associated with GA signaling transduction (ZmGID1 and ZmBHLH158) were up-regulated. Three genes negatively regulating GA signaling transduction (ZmGRAS48, ZmGRAS54, and Zm00001d033369) and two genes involved in ABA biosynthesis (ZmVP14 and ZmPCO14472) were down-regulated. The physiological test results also showed that the effects of GA and ABA on seed germination were similar to those of high and low-concentration COR, respectively, which indicated that the effect of COR on seed germination may be carried out through GA and ABA pathways. In addition, GO and KEGG analysis suggested that COR is also highly involved in antioxidant enzyme systems and secondary metabolite synthesis to regulate maize seed germination processes. These findings provide a valuable reference for further research on the mechanisms of maize seed germination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-024-01486-1 | DOI Listing |
Curr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFMol Breed
January 2025
Department of Agricultural Biotechnology, Genome and Stem Cell Center, Erciyes University, Kayseri, 38280 Türkiye.
This study investigated the potential of extended irradiation combined with immature embryo culture techniques to accelerate generation advancements in safflower ( L.) breeding programs. We developed an efficient speed breeding method by applying light-emitting diodes (LEDs) that emit specific wavelengths, alongside the in vitro germination of immature embryos under controlled environmental conditions.
View Article and Find Full Text PDFPeerJ
January 2025
Faculty of Agricultural Sciences, University of the Punjab, Lahore, Punjab, Pakistan.
The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants.
View Article and Find Full Text PDFJ Proteomics
January 2025
Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Ceará, Fortaleza, Brazil. Electronic address:
We analyze the proteome changes during the development of the carnauba palm (Copernicia prunifera) seedlings under skotomorphogenic conditions, by separating the embryo into its two components: haustorium (HA) and cotyledonary petiole (CP) and established the descriptive and quantitative proteomes of these tissues across four developmental stages. 5205 proteins were identified in HA and 6028 in CP. These proteomes are rich in proteins known to maintain the skotomorphogenic state, and in a complete set of proteins involved in cellular respiration and biosynthesis of secondary metabolites.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!