Ultralow radiant exposure of a short-pulsed laser to disrupt melanosomes with localized thermal damage through a turbid medium.

Sci Rep

Derpartment of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno, Osaka, 545-8585, Japan.

Published: August 2024

Short-pulsed lasers can treat dermal pigmented lesions through selective photothermolysis. The irradiated light experiences multiple scattering by the skin and is absorbed by abnormal melanosomes as well as by normal blood vessels above the target. Because the fluence is extremely high, the absorbed light can cause thermal damage to the adjacent tissue components, leading to complications. To minimize radiant exposure and reduce the risk of burns, a model of the melanosome-disruption threshold fluence (MDTF) has been developed that accounts for the light-propagation efficiency in the skin. However, the light-propagation efficiency is attenuated because of multiple scattering, which limits the extent to which the radiant exposure required for treatment can be reduced. Here, this study demonstrates the principle of melanosome disruption with localized thermal damage through a turbid medium by ultralow radiant exposure of a short-pulsed laser. The MDTF model was combined with a wavefront-shaping technique to design an irradiation condition that can increase the light-propagation efficiency to the target. Under this irradiation condition, melanosomes were disrupted at a radiant exposure 25 times lower than the minimal value used in conventional laser treatments. Furthermore, almost no thermal damage to the skin was confirmed through a numerical simulation. These experimental and numerical results show the potential for noninvasive melanosome disruption and may lead to the improvement of the safety of short-pulsed laser treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362287PMC
http://dx.doi.org/10.1038/s41598-024-70807-7DOI Listing

Publication Analysis

Top Keywords

radiant exposure
20
thermal damage
16
short-pulsed laser
12
light-propagation efficiency
12
ultralow radiant
8
exposure short-pulsed
8
localized thermal
8
damage turbid
8
turbid medium
8
multiple scattering
8

Similar Publications

Increasing solar UV radiation in Dortmund, Germany: data and trend analyses and comparison to Uccle, Belgium.

Photochem Photobiol Sci

December 2024

Federal Office for Radiation Protection, Ingolstaedter Landstrasse 1, 85764, Oberschleissheim, Germany.

Increasing solar ultraviolet radiation (UVR) can raise human exposure to UVR and adversely affect the environment. Precise measurements of ground-level solar UVR and long-term data series are crucial for evaluating time trends in UVR. This study focuses on spectrally resolved data from a UVR measuring station in Dortmund, Germany (51.

View Article and Find Full Text PDF

The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.

View Article and Find Full Text PDF

While surgical resection is a mainstay of cancer treatment, many tumors are unresectable due to stage, location, or comorbidities. Ablative therapies, which cause local destruction of tumors, are effective alternatives to surgical excision in several settings. Ethanol ablation is one such ablative treatment modality in which ethanol is directly injected into tumor nodules.

View Article and Find Full Text PDF

Objectives: The aim of this study was to measure radiant exposure and time necessary to deliver 16 J/cm2 of radiant exposure to simulated Class I and Class III preparations by first-year dental students. First-year dental students (n=89) received a 60-minute lecture on light-curing. Using the Managing Accurate Resin Curing Patient Simulator (MARC-PS) and protective blue-light-blocking glasses, students twice light-cured Class I and Class III restorations, using the Valo Grand Cordless light-curing unit with infection-control barriers on both Standard and High Power Plus modes.

View Article and Find Full Text PDF
Article Synopsis
  • Vat photopolymerization creates 3D parts by using patterned light to cure liquid resin, with the depth of curing measured against radiant exposure.* -
  • The commonly used Jacobs model, which applies to monochromatic light sources, often shows significant discrepancies in real-world applications, prompting the need for an updated approach.* -
  • An extended polychromatic model that incorporates the effects of broad spectrum light sources (like LEDs) has been developed, which improves the fitting of experimental data and enhances understanding of the working curve in relation to photophysical parameters.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!