A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A high-order focus interaction model and oral ulcer dataset for oral ulcer segmentation. | LitMetric

AI Article Synopsis

  • Computer-aided diagnosis for oral ulcers has lagged due to a shortage of publicly accessible datasets, yet early detection is crucial due to the high mortality associated with cancerous lesions.
  • This paper introduces the Autooral dataset, the first publicly available multi-task dataset focused on oral ulcer lesion segmentation and classification.
  • The authors propose a new modeling framework, HF-UNet, which utilizes innovative techniques for effective segmentation, achieving a high DSC value of approximately 0.80 while being efficient in memory use.

Article Abstract

Computer-aided diagnosis has been slow to develop in the field of oral ulcers. One of the major reasons for this is the lack of publicly available datasets. However, oral ulcers have cancerous lesions and their mortality rate is high. The ability to recognize oral ulcers at an early stage in a timely and effective manner is a very critical issue. In recent years, although there exists a small group of researchers working on these, the datasets are private. Therefore to address this challenge, in this paper a multi-tasking oral ulcer dataset (Autooral) containing two major tasks of lesion segmentation and classification is proposed and made publicly available. To the best of our knowledge, we are the first team to make publicly available an oral ulcer dataset with multi-tasking. In addition, we propose a novel modeling framework, HF-UNet, for segmenting oral ulcer lesion regions. Specifically, the proposed high-order focus interaction module (HFblock) performs acquisition of global properties and focus for acquisition of local properties through high-order attention. The proposed lesion localization module (LL-M) employs a novel hybrid sobel filter, which improves the recognition of ulcer edges. Experimental results on the proposed Autooral dataset show that our proposed HF-UNet segmentation of oral ulcers achieves a DSC value of about 0.80 and the inference memory occupies only 2029 MB. The proposed method guarantees a low running load while maintaining a high-performance segmentation capability. The proposed Autooral dataset and code are available from  https://github.com/wurenkai/HF-UNet-and-Autooral-dataset .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362486PMC
http://dx.doi.org/10.1038/s41598-024-69125-9DOI Listing

Publication Analysis

Top Keywords

oral ulcer
20
oral ulcers
16
ulcer dataset
12
oral
9
high-order focus
8
focus interaction
8
proposed autooral
8
autooral dataset
8
proposed
7
ulcer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!