Carbon-based nanodots have garnered recent interest for their simple synthesis and versatile utility, ranging from biomedical to (opto) electronic applications, evolving into a tunable and biocompatible material. Here, for the first time, a biochar (lotus leaf) derived carbon nanodots was synthesized through hydrothermal carbonization. The synthesized hollow spherical biochar was engineered via functionalization by grafting -SOH active sites. The attained catalyst was broadly analyzed by XRD, FTIR, TGA, BET, SEM-EDX, TEM, and XPS analysis after which it was applied for the acetalization reaction of crude glycerol (a biodiesel by-product) to form solketal, a potential fuel additive to valorize the large waste stream generated from biodiesel industry. Employing the RSM-CCD methodology, the experimental matrix was executed, and subsequent data were scrutinized through multiple regressions to model a quadratic equation. Under specific reaction parameters-a reaction duration of 14 min, a molar ratio of 7.5:1, and a catalyst loading of 5.7 wt.%, maximum solketal yield (95.7%) was attained through the ultrasonication method. Finally, to conclude, life cycle cost analysis (LCCA) for solketal production was studied here which determined the overall cost of solketal production per kilogram to be 0.719 USD ($), indicating high commercial applicability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362544PMC
http://dx.doi.org/10.1038/s41598-024-69553-7DOI Listing

Publication Analysis

Top Keywords

carbon nanodots
8
biodiesel by-product
8
crude glycerol
8
life cycle
8
cycle cost
8
cost analysis
8
solketal production
8
solketal
5
biochar carbon
4
nanodots catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!