Background: The significant death rate of glioblastoma is well-known around the world. The link between gut microbiota and glioma is becoming more studied. The goal of this study was to look at the relationships between intestinal flora and glioblastoma, and to provide a new perspective for the diagnosis as well as treatment of glioblastoma.
Methods: Fecal samples from 80 participants with glioblastoma (n = 40) and healthy individuals (n = 40) in this study were collected as well as analyzed utilizing 16S rRNA gene amplicon sequencing in order to characterize the gut microbial community.
Results: Each group has its own microbial community, and the microbial environment of glioblastoma patients had lower richness and evenness. The structure of gut microbiota community in glioblastoma patients showed profound changes, which includes the increase of pathogens in Fusobacteria and Bacteroidetes, and the reduction of probiotic bacteria in Firmicutes, Actinobacteria and Verrucomicrobia. Meanwhile, the significant correlations and clustering of OTUS (operational taxonomic units) in glioblastoma patients were discovered, and a biomarker panel (Fusobacterium, Escherichia/Shigella, Ruminococcus gnavus group, Lachnospira, Akkermansia, Parasutterella) had been used to discriminate the patients with glioblastoma from the healthy subjects (AUC: 0.80). Furthermore, the glioblastoma group exhibited multiple disturbed pathways through KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, particularly in genetic information processing. Moreover, the prediction of phenotypic characteristics of microbiome proposed that the glioblastoma patients might have more Gram-negative bacteria and opportunistic pathogens than the healthy controls.
Conclusions: When compared to healthy people, glioblastoma sufferers have a different host-microbe interaction. Furthermore, certain types of intestinal flora could be regarded as biomarkers and drug targets for the diagnosis as well as treatment of glioblastomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.106888 | DOI Listing |
PLoS One
January 2025
Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China. Electronic address:
Glioblastoma (GBM) is a highly lethal malignant brain tumor with poor survival rates, and chemoresistance poses a significant challenge to the treatment of patients with GBM. Here, we show that transketolase (TKT), a metabolic enzyme in the pentose phosphate pathway (PPP), attenuates the chemotherapy sensitivity of glioma cells in a manner independent of catalytic activity. Mechanistically, chemotherapeutic drugs can facilitate the translocation of TKT protein from the cytosol into the nucleus, where TKT physically interacts with XRN2 to regulate the resolution and removal of R-loops.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFCells
January 2025
Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!