Chronic wounds present a significant healthcare challenge marked by complexities such as persistent bleeding, inhibited cell proliferation, dysregulated inflammation, vulnerability to infection, and compromised tissue remodeling. Conventional wound dressings often prove inadequate in addressing the intricate requirements of chronic wound healing, leading to slow healing and heightened susceptibility to infections in patients with prolonged medical conditions. Bacterial biofilms in chronic wounds pose an additional challenge due to drug resistance. Advanced wound dressings have emerged as promising tools in expediting the healing process. Among these, pH-responsive polysaccharide-based hydrogels exhibit immense prospect by adapting their functions to dynamic wound conditions. Despite their potential, the current literature lacks a thorough review of these wound dressings. This review bridges this gap by meticulously examining factors related to chronic wounds, current strategies for healing, and the mechanisms and potential applications of pH-responsive hydrogel wound dressings as an emerging therapeutic solution. Special focus is given to their remarkable antibacterial properties and significant self-healing abilities. It further explores the pH-monitoring functions of these dressings, elucidating the associated pH indicators. This synthesis of knowledge aims to guide future research and development in the field of pH-responsive wound dressings, providing valuable insights into their potential applications in wound care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135118 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266000, China. Electronic address:
In contemporary times, the waning effectiveness of antibiotics against bacterial infections is progressively giving rise to significant concerns in public health. Although photodynamic technology possesses a potent ability to deactivate bacteria, its non-selective attack on normal cells poses potential side effects. Hence, in this study, a boric acid-substituted phthalocyanine photosensitizer (BAPc) was synthesized, exhibiting remarkable bacterial targeting capability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland. Electronic address:
Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China. Electronic address:
The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.
View Article and Find Full Text PDFSurg Technol Int
January 2025
Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.
Chronic wounds are notoriously challenging to heal as they are often halted in their normal healing process. The concept of TIME (Tissue, Inflammation/Infection, Moisture imbalance, Epithelial edge advancement) has been widely utilized in clinical practice to prepare wound beds and promote healing, particularly in longstanding wounds. Traditional methods of wound bed preparation are often inadequate in healing chronic wounds or they may not be tolerated by patients.
View Article and Find Full Text PDFJ Am Podiatr Med Assoc
January 2025
†Jesse Brown VA Medical Center,820 S Damen Ave, Chicago, IL.
Total contact casting is the gold standard for plantar foot ulcers but has been questioned in heel pressure ulcers. Current offloading of heel ulcers is typically removable offloading boots. We describe using a modified posterior splint to offload heel ulcers in nonweightbearing patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!