Medical dressings with multifunctional properties, including potent regeneration capability and good biocompatibility, are increasingly needed in clinical practice. In this study, we reported a novel hybrid wound dressing (PCL/SerMA/DMOG) that combines electrospun PCL membranes with DMOG-loaded methacrylated sericin (SerMA) hydrogel. In such a design, DMOG molecules are released from the hybrid dressing in a sustained manner. A series ofassays demonstrated that DMOG-loaded hybrid dressing has multiple biological functions, including promotion of human umbilical vein endothelial cells proliferation and migration,vascularization, and the generation of intracellular NO. When applied to the cutaneous wound, the PCL/SerMA/DMOG dressing significantly accelerated wound closure and tissue regeneration by promoting angiogenesis in the wound area, collagen deposition, and cell proliferation within the wound bed. These results highlight the potential clinical application of PCL/SerMA/DMOG hybrid dressings as promising alternatives for accelerating wound healing via improved biocompatibility and angiogenesis amelioration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ad7563 | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Due to its availability and biocompatibility, the human amniotic membrane (hAM) is being investigated by a large number of researchers with the goal of gaining a better understanding of the materials' mechanical behavior and structural integrity and optimizing them for various Tissue Engineering applications. In this research, biopolymers sodium alginate (SA) and silk fibroin (SF) were electrospun onto a decellularized hAM, resulting in two types of hybrid scaffolds: hAM/SF and hAM/SF/SA. The mechanical characteristics of these nanofibers were then analyzed to guide scaffold optimization for applications using these materials.
View Article and Find Full Text PDFVopr Kurortol Fizioter Lech Fiz Kult
January 2025
Petrovsky National Research Centre of Surgery, Moscow, Russia.
Unlabelled: One of the tasks of restorative medicine is the rehabilitation of the body that has suffered from injuries, diseases or adverse environmental effects, and the restoration of the functional reserves of the human body. Currently, a search is underway for new treatment technologies, including the use of wound dressings with specified functional qualities.
Objective: To characterize the effect of a wound dressing based on an ion-track membrane modified with collagen and chitosan nanofibers on the efficiency of skin restoration in experimental animals after a severe thermal burn.
Phys Rev Lett
December 2024
Beijing Computational Science Research Center, Beijing 100193, China.
In hybrid systems where nanowires are proximity-coupled with superconductors, the low-energy theory fails to determine the topological phase with Majorana fermion (MF) when the magnetic field or proximity coupling is much stronger. To overcome this limitation, we propose a holistic approach that defines MF by considering both the motion of electrons in the nanowire and the quasiparticle excitations in the superconductor. This approach transcends the constraints of low-energy theory and offers broad applicability.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. Electronic address:
Chronic consequences of diabetes that are most commonly encountered are diabetic foot ulcers (DFUs), driven by microbiota-immune system dyshomeostasis, eventually leading to delayed wound healing. Available therapies, such as systemic or topical administration of anti-inflammatory or antimicrobial agents, are limited due to antibiotic resistance and immune dysfunction. Herein, a hybrid hydrogel dressing is developed as the artificial bioadhesive barrier at wound sites to maintain microbial and immunological homeostasis locally and have potent anti-inflammatory effects.
View Article and Find Full Text PDFGels
December 2024
Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania.
Hydrogels are a viable option for biomedical applications due to their biocompatibility, biodegradability, and ability to incorporate various healing agents while maintaining their biological efficacy. This study focused on the preparation and characterization of novel hybrid hydrogels enriched with the natural algae compound Ulvan for potential use in wound dressings. The characterization of the hydrogel membranes involved multiple methods to assess their structural, mechanical, and chemical properties, such as pH measurements, swelling, moisture content and uptake, gel fraction, hydrolytic degradation, protein adsorption and denaturation tests, rheological measurements, SEM, biocompatibility testing, and scratch wound assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!