The thermal transport properties of nanowires (NWs) can be significantly influenced by the implementation of a core-shell structure, which introduces interface scattering and phonon localization effects, opening avenues for novel applications. In this paper, we use the method of non-equilibrium molecular dynamics to simulate the effects of system temperature, cross-sectional width, and nanopillar interface on the thermal transport of GaN/SiNcore-shell NWs. The thermal transport process of phonons in core-shell NWs is studied by calculating the vibrational density of states, phonon participation rate, and dispersion curve. The results show that the core-shell NWs characterized by smooth interfaces exhibit a 17.4% decrease in thermal conductivity (TC) at room temperature when contrasted with pristine GaN NWs. Furthermore, the TC of GaN/SiNcore-shell NWs can be further reduced by adding nanopillars at the interface. Due to resonance effect, thus effectively regulating the thermal transport. The presence of nanopillars increases phonon-surface scattering intensity at low-frequency and modifies phonon dispersion to decrease the group velocity. In addition, the hybridization of phonon modes between those of the nanopillars and the SiNshell gives rise to numerous dispersionless resonance phonon modes that span the entire phonon spectrum. This research delves into the effects of nanopillars and interfaces on thermal transport, providing important guidance for understanding confinement effects and establishing a robust theoretical basis for the regulation of thermal transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad7567 | DOI Listing |
Chem Asian J
January 2025
Kanagawa University, Department of Chemistry, JAPAN.
Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Block B, Ottergemsesteenweg 460, BE-9000, Ghent, Belgium.
Dried urine spots have recently been proposed as an alternative matrix in the anti-doping field. Drying urine may open the opportunity to limit microbial and thermal degradation of the prohibited substances during transportation to the anti-doping laboratories without the need for refrigeration or freezing. In this study, a multi-targeted initial testing procedure was developed for the determination of 237 prohibited drugs/metabolites from 11 different classes in dried urine spots.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 20092, China.
In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼L^{α}(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!