Metabolic profiles and protein expression responses of Pacific oyster (Crassostrea gigas) to polystyrene microplastic stress.

Food Chem

College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China. Electronic address:

Published: January 2025

AI Article Synopsis

  • - The study investigates how microplastics affect oysters by examining their metabolic profiles and protein expressions through various analytical methods after 21 days of exposure.
  • - Results showed microplastic exposure led to oxidative stress in oysters, notably decreasing SOD (superoxide dismutase) activity in the lowest concentration tested (0.1 mg/L).
  • - Metabolomics revealed that microplastics disrupted several metabolic pathways, impacting amino acid and lipid metabolism, with varying concentrations resulting in different metabolomic responses, providing vital insights for food safety and health risks.

Article Abstract

The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140961DOI Listing

Publication Analysis

Top Keywords

protein expression
8
expression responses
8
microplastic stress
8
microplastics induced
8
microplastics
5
metabolic profiles
4
profiles protein
4
responses pacific
4
pacific oyster
4
oyster crassostrea
4

Similar Publications

Claudins as diagnostic tools and therapeutic targets-Glimpse of the horizon.

Cancer Treat Rev

January 2025

Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK. Electronic address:

Claudins (CLDNs) play a crucial and indispensable role as fundamental components within the structure of tight junctions. Due to the distinct and unique distribution pattern exhibited by CLDNs in both normal and malignant tissues, these proteins have garnered significant attention as pivotal targets for systemic anti-cancer therapy and as noteworthy diagnostic markers. This review provides a comprehensive and detailed elucidation of the fundamental understanding surrounding CLDNs, their intricate expression patterns, the potential role they play in cancer diagnosis and therapeutic potentials; all encapsulated within a succinct summary of the cutting-edge advancements and the information derived from various clinical trials.

View Article and Find Full Text PDF

Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.

View Article and Find Full Text PDF

Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.

Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.

View Article and Find Full Text PDF

The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.

View Article and Find Full Text PDF

Androgens are pleiotropic and play pivotal roles in the formation and variation of sexual phenotypes. We show that differences in circulating androgens between the three male mating morphs in ruff sandpipers are linked to 17-beta hydroxysteroid dehydrogenase 2 (HSD17B2), encoded by a gene within the supergene that determines the morphs. Low-testosterone males had higher expression in blood than high-testosterone males, as well as in brain areas related to social behaviors and testosterone production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!