AI Article Synopsis

  • - The study investigates two natural compounds, TR2 and TR22, for their potential antioxidant and anticancer properties against two types of breast cancer cells (estrogen-sensitive MCF-7 and non-sensitive MDA-MB 231).
  • - TR2 demonstrated stronger antioxidant effects compared to standard antioxidants and effectively inhibited the growth and migration of breast cancer cells, while TR22 showed a more significant proliferation inhibition following acetylation.
  • - Molecular docking studies indicated that both compounds could inhibit receptor tyrosine kinases, suggesting their potential as effective agents in slowing cancer progression.

Article Abstract

Cancers account for many deaths worldwide and natural compounds and their derivatives are interesting chemotherapeutic agents for cancer drug development. In this study, a natural compound 3,3'4-trimethoxy-4'-rutinosylellagic acid (TR2) and its acetylated derivative 3,3'4-trimethoxy-4'-hexaacetylrutinosylellagic acid (TR22) were evaluated for their antioxidant and anticancer effects against estrogen sensitive (MCF-7) and estrogen non-sensitive (MDA-MB 231) breast adenocarcinoma. In the β-Carotene-linoleic acid assay, DPPH radical scavenging and CUPRAC assay, the compound TR2 had better activity than the standard α-Tocopherol, while in the ABTS assay, it was more active than both standards α- α-Tocopherol and BHA. Both compounds had good antioxidant effects with TR2 being more active than TR22. Both compounds inhibited growth of breast carcinoma cells when compared to the untreated controls after 72 h. Compound TR22 significantly (p < 0.001) inhibited proliferation of both MCF-7 and MDA-MB 231 breast carcinoma cell lines suggesting that acetylation reaction improves inhibition of breast cancer cells growth. On the contrary, TR2 exhibited better inhibitory effect of clone formation than TR22 suggesting that acetylation reduces the activity in this assay. Both compounds inhibited migration of the cancer cells when compared to the untreated control cells and compound TR2 exhibited greater cellular anti-migration effect than TR22 at the same concentration and after the same period of incubation. Molecular docking studies supplemented the results and revealed that TR2 and TR22 had appreciable interactions with tyrosine kinase with negative binding energies suggesting that they are potent receptor tyrosine kinase inhibitors which can impede on cancer progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117370DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
33'4-trimethoxy-4'-rutinosylellagic acid
8
acetylated derivative
8
breast cancer
8
molecular docking
8
mda-mb 231
8
231 breast
8
compound tr2
8
compounds inhibited
8
breast carcinoma
8

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!