Antibodies and antibody conjugates are essential components of life science research, but their inherent instability necessitates cold storage or lyophilization, posing logistical and sustainability challenges. Capillary-mediated vitrification has shown promise as a tool for improving biomolecule stability. In this study, we assess the feasibility of shipping and storing CMV-stabilized antibody reagents at ambient temperature using a purified rabbit polyclonal as a model system. The conditions tested included a simulated temperature excursion, ambient shipping, and storage for approximately two months at room-temperature. Antibody function was measured by both ELISA and Octet bio-layer interferometry kinetic measurements. Yield, aggregation, and thermal stability were assessed by UV/VIS, Size Exclusion Chromatography (SEC), thermal melting, and thermal aggregation studies. Results indicate >97 % protein yield and no impact on the binding activity. No evidence of aggregation or oligomer formation was detected. Addition of the vitrification buffer to the sample matrix resulted in an increase in the aggregation on-set temperature, indicating enhanced thermostability. A slight shift in both the SEC retention time for the main peak and a difference in aggregation behavior at high temperatures were noted post-vitrification. We hypothesize that these differences are related to the interaction of the protein with the saccharide component of the vitrification matrix and the stabilization mechanism of sugars. The cumulative data supports the use of Capillary Mediated Vitrification as a viable alternative to frozen reagent storage, with the potential to significantly impact reagent stability, assay performance, laboratory operations, and sustainability initiatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116409DOI Listing

Publication Analysis

Top Keywords

capillary mediated
8
mediated vitrification
8
reagents ambient
8
ambient temperature
8
impact binding
8
vitrification
5
aggregation
5
vitrification novel
4
novel technique
4
technique enables
4

Similar Publications

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation.

View Article and Find Full Text PDF

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Background: Polymerase delta-interacting protein 2 (Poldip2) is a novel regulator of vascular permeability that has been shown to be involved in aggravating blood-brain barrier (BBB) disruption following stroke; however, the underlying mechanisms are unknown. While endothelial tight junctions (TJ) are critical mediators of BBB permeability, the effect of Poldip2 on TJ function has not been elucidated yet. Here, we aim to define the mechanism by which Poldip2 mediates BBB disruption, specifically focusing on phosphorylation and stabilization of the TJ integral protein ZO-1.

View Article and Find Full Text PDF

Lung Endothelial Cell Heterogeneity in Health and Pulmonary Vascular Disease.

Am J Physiol Lung Cell Mol Physiol

January 2025

Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

Lung endothelial cells (ECs) are essential for maintaining organ function and homeostasis. Despite sharing some common features with ECs from organ systems, lung ECs exhibit significant heterogeneity in morphology, function, and gene expression. This heterogeneity is increasingly recognized as a key contributor to the development of pulmonary diseases like pulmonary hypertension (PH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!