The extensive use of fluoride in agriculture, industry, medicine, and daily necessities has raised growing concerns about fluoride residue. To date, real-time visual detection and efficient removal of fluoride ions from water remain greatly desirable. Herein, nano-CAU-10-NH@RhB is introduced as a ratiometric fluorescent probe and efficient scavenger for the intelligent detection and removal of fluoride ions. CAU-10-NH@RhB is readily obtained through one-pot synthesis and exhibits high sensitivity and selectivity for real-time fluoride ion detection, with a naked-eye distinguishable color change from pink to blue. A portable device for point-of-care testing was developed based on color hue analysis readout using a smartphone. A quantitative response was achieved across a wide concentration range, with a detection limit of 54.2 nM. Adsorption experiments suggest that nano-CAU-10-NH@RhB serves as an efficient fluoride ion scavenger, with a fluoride adsorption capacity of 49.3 mg/g. Moreover, the mechanistic study revealed that hydrogen bonds formed between fluoride ions and amino groups of CAU-10-NH@RhB are crucial for the detection and adsorption of fluoride ions. This analysis platform was also used for point-of-care quantitative visual detection of fluoride ions in food, water, and toothpaste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135659 | DOI Listing |
Biol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFNutrients
January 2025
College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA.
Background/objectives: Urinary fluoride (UF) is the most well-established biomarker for fluoride exposure, and understanding its distribution can inform risk assessment for potential adverse systemic health effects. To our knowledge, this study is the first to report distributions of UF among youth according to sociodemographic factors in a nationally representative United States (US) sample.
Methods: The study included 1191 children aged 6-11 years and 1217 adolescents aged 12-19 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2016.
Molecules
January 2025
Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.
View Article and Find Full Text PDFInorg Chem
January 2025
CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600 Pessac ,France.
The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!