Fully autonomous water monitoring by plant-inspired robots.

J Hazard Mater

Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

Published: November 2024

Developing countries struggle with water quality management owing to poor infrastructure, limited expertise, and financial constraints. Traditional water testing, relying on periodic site visits and manual sampling, is impractical for continuous wide-area monitoring and fails to detect sudden heavy metal contamination. To address this, plant-inspired robots capable of fully autonomous water quality monitoring are proposed. Constructed from paper, the robot absorbs surrounding water through its roots. This paper robot is controlled by paper-based microfluidic logic that sends absorbed water to petal-shaped actuators only when the water is polluted by heavy metals. This triggers the actuators to swell and bend like a blooming flower, visually signaling contamination to local residents. In tests with copper-contaminated water, the robotic flower's diameter increased from 4.69 cm to 14.89 cm, a more than threefold expansion (217.25 %). This significant blooming movement serves as a highly visible and easily recognizable indicator of water pollution, even for the public. Furthermore, the paper robot can be mass-produced at a low cost (∼$0.2 per unit) and deployed over large areas. Once installed, the paper robot operates autonomously using surrounding water as a power source, eliminating the need for external electrical infrastructure and expert intervention. Therefore, this autonomous robot offers a new approach to water quality monitoring suitable for resource-limited environments, such as Sub-Saharan Africa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135641DOI Listing

Publication Analysis

Top Keywords

paper robot
16
water quality
12
water
11
fully autonomous
8
autonomous water
8
plant-inspired robots
8
quality monitoring
8
surrounding water
8
robot
5
monitoring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!