A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing proton-coupled electron transfer drives efficient methanogenesis in anaerobic digestion. | LitMetric

Enhancing proton-coupled electron transfer drives efficient methanogenesis in anaerobic digestion.

Water Res

State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Published: November 2024

The enhancement of electron or proton transfer between syntrophic microbes has been widely recognised as a means for improving methane generation. However, the uncoupled supplementation of electrons and protons in multiphase anaerobic environment hinders the balanced uptake of electrons and protons in the cytoplasm of methanogens, limiting methanogenesis efficiency. Herein, the cooperative effect of a proton-conductive material (PM) and an electron-conductive material (EM) in enhancing proton-coupled electron transfer (PCET) and driving efficient methanogenesis in anaerobic digestion was investigated. The cooperation of the PM and EM significantly increased methane production and the maximum methane generation rate by 78.9 % and 103.5 %, respectively, indicating enhanced methanogenesis efficiency. Analysis of the physicochemical properties, biochemical components, and microbial dynamics revealed that the cooperation of the PM and EM improved the metabolism of syntrophic microbes, which was critically dependent on electron and proton transfer. This enhancement was primarily due to the improvement in PCET, as mainly supported by hydrogen/deuterium kinetic isotope effect measurements, multi-omics integration analyses and reaction thermodynamics and kinetics analyses. Our findings suggest that the PCET enhancement stimulated efficient membrane-bound enzymatic reactions related to electron-driven proton translocation and facilitated electron and proton supply for CO reduction to realise highly efficient methane generation. These findings are expected to provide a new insight into effective electron and proton coupling transfer for methanogenic metabolism in multiphase anaerobic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122331DOI Listing

Publication Analysis

Top Keywords

electron proton
16
methane generation
12
enhancing proton-coupled
8
proton-coupled electron
8
electron transfer
8
efficient methanogenesis
8
methanogenesis anaerobic
8
anaerobic digestion
8
proton transfer
8
syntrophic microbes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!