Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106660DOI Listing

Publication Analysis

Top Keywords

brain regions
12
brain
9
functional brain
8
brain networks
8
interactions brain
8
identify potential
8
potential biomarkers
8
heterogeneous fbns
8
heterogeneous
5
learning functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!